Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 168, Issue 2, pp 270–274 | Cite as

Detection of Small Subsets of CD4+ Lymphocytes with SmartFlare Nanoprobes

  • A. P. ToptyginaEmail author
  • R. Sh. Zakirov
  • K. S. Kapitanova
  • E. L. Semikina
Article
  • 9 Downloads

SmartFlare technology allows detection of mRNA in single living cells. We studied the possibility of using SmartFlare nanoprobes for detection of small subsets of CD4+ lymphocytes. It was found that SmartFlare allows detection of transcriptional master regulators of major CD4+T helper subsets in living human lymphocytes. Nanoprobes labeled with Cy5 fluorophore were better detected by flow cytometry than nanoprobes labeled with Cy3. Appropriate time of lymphocyte incubation with SmartFlare probes was 24 h.

Key Words

subsets of CD4+ lymphocytes SmartFlare transcriptional factors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Briley WE, Bondy MH, Randeria PS, Dupper TJ, Mirkin CA. Quantification and real-time tracking of RNA in live cells using Sticky-flares. Proc. Natl Acad. Sci. USA. 2015;112(31):9591-9595.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gautrey H, Jackson C, Dittrich AL, Browell D, Lennard T, Tyson-Capper A. SRSF3 and hnRNP H1 regulate a splicing hotspot of HER2 in breast cancer cells. RNA Biol. 2015;12(10):1139-1151.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Halo TL, McMahon KM, Angeloni NL, Xu Y, Wang W, Chinen AB, Malin D, Strekalova E, Cryns VL, Cheng C, Mirkin CA, Thaxton CS. NanoFlares for the detection, isolation, and culture of live tumor cells from human blood. Proc. Natl Acad. Sci. USA. 2014;111(48):17,104-17,109.CrossRefGoogle Scholar
  4. 4.
    Krönig M, Walter M, Drendel V, Werner M, Jilg CA, Richter AS, Backofen R, McGarry D, Follo M, Schultze-Seemann W, Schüle R. Cell type specific gene expression analysis of prostate needle biopsies resolves tumor tissue heterogeneity. Oncotarget. 2015;6(2):1302-1314.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    McClellan S, Slamecka J, Howze P, Thompson L, Finan M, Rocconi R, Owen L. mRNA detection in living cells: A next generation cancer stem cell identification technique. Methods. 2015;82:47-54.CrossRefPubMedGoogle Scholar
  6. 6.
    Rape AD, Zibinsky M, Murthy N, Kumar S. A synthetic hydrogel for the high-throughput study of cell-ECM interactions. Nat. Commun. 2015;6:8129. doi:  https://doi.org/10.1038/ncomms9129.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sarkar S, Cohen N, Sabhachandani P, Konry T. Phenotypic drug profiling in droplet microfluidics for better targeting of drug-resistant tumors. Lab. Chip. 2015;15(23):4441-4450. doi:  https://doi.org/10.1039/c5lc00923e.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Seferos DS, Giljohann DA, Hill HD, Prigodich AE, Mirkin CA. Nano-flares: probes for transfection and mRNA detection in living cells. J. Am. Chem. Soc. 2007;129(50):15 477-15 479.CrossRefGoogle Scholar
  9. 9.
    Seftor EA, Seftor REB, Weldon D, Kirsammer GT, Margaryan NV, Gilgur A, Hendrix MJC. Melanoma tumor cell heterogeneity: a molecular approach to study subpopulations expressing the embryonic morphogen nodal. Semin. Oncol. 2014;41(2):259-266.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. P. Toptygina
    • 1
    Email author
  • R. Sh. Zakirov
    • 2
  • K. S. Kapitanova
    • 1
  • E. L. Semikina
    • 2
  1. 1.G. N. Gabrichevsky Moscow Research Institute for Epidemiology and MicrobiologyFederal Service on Surveillance for Consumer Rights Protection and Human Well-BeingMoscowRussia
  2. 2.National Medical Research Center for Children’s HealthMinistry of Health of the Russian FederationMoscowRussia

Personalised recommendations