Advertisement

Neuroprotective Dipeptide Noopept Prevents DNA Damage in Mice with Modeled Prediabetes

  • R. U. OstrovskayaEmail author
  • S. S. Yagubova
  • A. K. Zhanataev
  • E. A. Anisina
  • T. A. Gudasheva
  • A. D. Durnev
PHARMACOLOGY AND TOXICOLOGY
  • 2 Downloads

In experiments on BALB/c mice, prediabetes was modeled by administration of streptozotocin in a dose of 130 mg/kg. DNA damage was assessed by the method of DNA comets. Noopept (0.5 mg/kg intraperitoneally) was administered for 14 days before and for 6, 13, or 14 days after streptozotocin administration. Despite moderate hyperglycemia and increased malondialdehyde level, the intensity of DNA damage in cells of the pancreas, liver, and kidneys significantly surpassed the control values. Noopept normalized these parameters due to its pronounced antigenotoxic effect. For both the damaging effect of streptozotocin and the normalizing effect of Noopept, DNA changes manifested mainly in terms of atypical DNA comets. Our findings confirm the role of DNA damage in the pathogenesis of diabetes. They indicate the possibility of pharmacological protection of pancreatic β cells with the neuroprotective drug and provide an important argument in favor of the hypothesis about the similarity of the mechanisms of formation of the resistance of neurons and β cells to the cytotoxic influences.

Key Words

Noopept DNA comet assay prediabetes streptozotocin atypical DNA comets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Durnev AD, Zhanataev AK, Shreder OV, Seredenina VS. Genotoxic events and diseases. Mol. Med. 2013;(3):3-19. Russian.Google Scholar
  2. 2.
    Zhanataev AK, Anisina EA, Chayka ZV, Miroshkina IA, Durnev VV. Phenomenon of atypical DNA comets. Tsitologiya. 2017;59(3):163-168. Russian.Google Scholar
  3. 3.
    Ostrovskaya RU, Antipova TA, Nikolaev SV, Kruglov SV, Ozerova IV, Gudasheva TA, Seredenin SB. Deficit of neurotrophins in experimental diabetes - correction by proline-containing dipeptide. Ross. Fiziol. Zh. 2017;103(11):1292-1302. Russian.Google Scholar
  4. 4.
    Ostrovskaya RU, Zolotov NN, Ozerova IV, Ivanova EA, Kapitsa IG, Taraban KV, Michunskaya AM, Voronina TA, Gudasheva TA, Seredenin SB. Noopept normalizes parameters of the incretin system in rats with experimental diabetes. Bull. Exp. Biol. Med. 2014;157(3):344-349. doi:  https://doi.org/10.1007/s10517-014-2562-5 CrossRefPubMedGoogle Scholar
  5. 5.
    Ostrovskaya RU, Tsaplina AP, Vakhitova YuV, Salimgareeva MKh, Yamidanov RS. Effect of the novel cognition enhancing and neuroprotective dipeptide Noopept on the streptozotocin-induced model of sporadic Alzheimer disease in rats. Eksp. Klin. Farmakol. 2010;73(1):2-6. Russian.Google Scholar
  6. 6.
    Al-Gayyar MM, Mysona BA, Matragoon S, Abdelsaid MA, El-Azab MF, Shanab AY, Ha Y, Smith SB, Bollinger KE, El-Remessy AB. Diabetes and overexpression of proNGF cause retinal neurodegeneration via activation of RhoA pathway. PLoS One. 2013;8(1). ID e54692. doi:  https://doi.org/10.1371/journal.pone.0054692 CrossRefGoogle Scholar
  7. 7.
    Gudasheva TA, Voronina TA, Ostrovskaya RU, Rozantsev GG, Vasilevich NI, Trofimov SS, Kravchenko EV, Skoldinov AP, Seredenin SB. Synthesis and antiamnesic activity of a series of N-acylprolyl-containing dipeptides. Eur. J. Med. Chem. 1996;31(2):151-157.CrossRefGoogle Scholar
  8. 8.
    Hayashi K, Kojima R, Ito M. Strain differences in the diabetogenic activity of streptozotocin in mice. Biol. Pharm. Bull. 2006;29(6):1110-1119.CrossRefGoogle Scholar
  9. 9.
    Kushwaha S, Vikram A, Trivedi PP, Jena GB. Alkaline, Endo III and FPG modified comet assay as biomarkers for the detection of oxidative DNA damage in rats with experimentally induced diabetes. Mutat. Res. 2011;726(2):242-250.CrossRefGoogle Scholar
  10. 10.
    Mizuno N, Shiba H, Xu WP, Inui T, Fujita T, Kajiya M, Takeda K, Hasegawa N, Kawaguchi H, Kurihara H. Effect of neurotrophins on differentiation, calcification and proliferation in cultures of human pulp cells. Cell Biol. Int. 2007;31(12):1462-1469.CrossRefGoogle Scholar
  11. 11.
    Moore K, Roberts LJ 2nd. Measurement of lipid peroxidation. Free Radic. Res. 1998;28(6):659-671.CrossRefGoogle Scholar
  12. 12.
    Ostrovskaya RU, Vakhitova YV, Kuzmina USh, Salimgareeva MKh, Zainullina LF, Gudasheva TA, Vakhitov VA, Seredenin SB. Neuroprotective effect of novel cognitive enhancer Noopept on AD-related cellular model involves the attenuation of apoptosis and tau hyperphosphorylation. J. Biomed. Sci. 2014;21(1). ID 74. doi:  https://doi.org/10.1186/s12929-014-0074-2
  13. 13.
    Pelsman A, Hoyo-Vadillo C, Gudasheva TA, Seredenin SB, Ostrovskaya RU, Busciglio J. GVS-111 prevents oxidative damage and apoptosis in normal and Down’s syndrome human cortical neurons. Int. J. Dev. Neurosci. 2003;21(3):117-124.CrossRefGoogle Scholar
  14. 14.
    Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, Nogueira-Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. 2018;9(2). ID 119. doi:  https://doi.org/10.1038/s41419-017-0135-z
  15. 15.
    Watcho P, Stavniichuk R, Tane P, Shevalye H, Maksimchyk Y, Pacher P, Obrosova IG. Evaluation of PMI-5011, an ethanolic extract of Artemisia dracunculus L, on peripheral neuropathy in streptozotocindiabetic mice. Int. J. Mol. Med. 2011;27(3):299-307.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • R. U. Ostrovskaya
    • 1
    Email author
  • S. S. Yagubova
    • 1
  • A. K. Zhanataev
    • 1
  • E. A. Anisina
    • 1
  • T. A. Gudasheva
    • 1
  • A. D. Durnev
    • 1
  1. 1.V. V. Zakusov Research Institute of PharmacologyMoscowRussia

Personalised recommendations