Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 168, Issue 1, pp 125–131 | Cite as

Phenotype and Secretome of Monocyte-Derived Macrophages Interacting with Mesenchymal Stromal Cells under Conditions of Hypoxic Stress

  • O. Yu. Alekseeva
  • P. I. Bobyleva
  • E. R. AndreevaEmail author
Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • 3 Downloads

We studied the effect of short-term hypoxic stress on the phenotypic polarization of monocyte-derived macrophages and their secretory activity during interaction with mesenchymal stromal cells. In the presence of mesenchymal stromal cells, monocyte-derived macrophages exhibited the signs of M2 polarization, which was evidenced by increased expression of CD206 and CD163 markers, as well as increased transcription and translation of IL-6. Short-term hypoxic stress promoted a shift of macrophage phenotype from inflammatory M1 towards anti-inflammatory M2 in monoculture and co-culture with mesenchymal stromal cells. In addition to the immunoregulatory action, mesenchymal stromal cells demonstrated stromal activity and maintained high viability of monocyte-derived macrophages.

Key Words

monocytes/macrophages multipotent mesenchymal stromal cells hypoxia phenotype polarization secretome 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buravkova LB, Grinakovskaya OS, Andreeva ER, Zhambalova AP, Kozionova MP. Characteristics of human lipoaspirate-isolated mesenchymal stromal cells cultivated under lower oxygen tension. Cell Tissue Biol. 2009;3(1):23-28.CrossRefGoogle Scholar
  2. 2.
    Anton K, Banerjee D, Glod J. Macrophage-associated mesenchymal stem cells assume an activated, migratory, proinflammatory phenotype with increased IL-6 and CXCL10 secretion. PLoS One. 2012;7(4). ID e35036. doi:  https://doi.org/10.1371/journal.pone.0035036 CrossRefGoogle Scholar
  3. 3.
    Buechler C, Ritter M, Orsó E, Langmann T, Klucken J, Schmitz G. Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and anti-inflammatory stimuli. J. Leukoc. Biol. 2000;67(1):97-103.CrossRefGoogle Scholar
  4. 4.
    Cramer T, Yamanishi Y, Clausen BE, Förster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R, Corr M, Nizet V, Firestein GS, Gerber HP, Ferrara N, Johnson RS. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell. 2003;112(5):645-657.CrossRefGoogle Scholar
  5. 5.
    Eggenhofer E, Hoogduijn MJ. Mesenchymal stem cell-educated macrophages. Transplant. Res. 2012;1(1). ID 12. doi:  https://doi.org/10.1186/2047-1440-1-12
  6. 6.
    Egners A, Erdem M, Cramer T. The response of macrophages and neutrophils to hypoxia in the context of cancer and other inflammatory diseases. Mediators Inflamm. 2016;2016. ID 2053646. doi:  https://doi.org/10.1155/2016/2053646 CrossRefGoogle Scholar
  7. 7.
    Espagnolle N, Balguerie A, Arnaud E, Sensebé L, Varin A. CD54-mediated interaction with pro-inflammatory macrophages increases the immunosuppressive function of human mesenchymal stromal cells. Stem Cell Rep. 2017;8(4):961-976.CrossRefGoogle Scholar
  8. 8.
    Fleischer J, Soeth E, Reiling N, Grage-Griebenow E, Flad HD, Ernst M. Differential expression and function of CD80 (B7-1) and CD86 (B7-2) on human peripheral blood monocytes. Immunology. 1996;89(4):592-598.CrossRefGoogle Scholar
  9. 9.
    Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 2005;5(12):953-964.CrossRefGoogle Scholar
  10. 10.
    Kim J, Hematti P. Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Еxp. Hematol. 2009;37(12):1445-1453.Google Scholar
  11. 11.
    Lahat N, Rahat MA, Kinarty A, Weiss-Cerem L, Pinchevski S, Bitterman H. Hypoxia enhances lysosomal TNFαlpha degradation in mouse peritoneal macrophages. Am. J. Physiol. Cell Physiol. 2008;295(1):C2-C12.CrossRefGoogle Scholar
  12. 12.
    Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 2013;229(2):176-185.CrossRefGoogle Scholar
  13. 13.
    Melief SM, Schrama E, Brugman MH, Tiemessen MM, Hoogduijn MJ, Fibbe WE, Roelofs H. Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes toward anti-inflammatory macrophages. Stem Cells. 2013;31(9):1980-1991.CrossRefGoogle Scholar
  14. 14.
    Ren G, Zhao X, Zhang L, Zhang J, L’Huillier A, Ling W, Roberts AI, Le AD, Shi S, Shao C, Shi Y. Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J. Immunol. 2010;184(5):2321-2328.CrossRefGoogle Scholar
  15. 15.
    Rhim T, Lee DY, Lee M. Hypoxia as a target for tissue specific gene therapy. J. Control. Release. 2013;172(2):484-494.CrossRefGoogle Scholar
  16. 16.
    Roebuck KA, Finnegan A. Regulation of intercellular adhesion molecule-1 (CD54) gene expression. J. Leukoc. Biol. 1999;66(6):876-888.CrossRefGoogle Scholar
  17. 17.
    Varesio L, Raggi F, Pelassa S, Pierobon D, Cangelosi D, Giovarelli M, Bosco MC. Hypoxia reprograms human macrophages towards a proinflammatory direction. J. Immunol. 2016;196(1, Suppl). ID 201.2.Google Scholar
  18. 18.
    Vasandan AB, Jahnavi S, Shashank C, Prasad P, Kumar A, Prasanna SJ. Human Mesenchymal stem cells program macrophage plasticity by altering their metabolic status via a PGE2-dependent mechanism. Sci. Rep. 2016;6. ID 38308. doi: https://doi.org/10.1038/srep38308
  19. 19.
    Wang N, Liang H, Zen K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front. Immunol. 2014;5. ID 614. doi:  https://doi.org/10.3389/fimmu.2014.00614
  20. 20.
    Zhang QZ, Su WR, Shi SH, Wilder-Smith P, Xiang AP, Wong A, Nguyen AL, Kwon CW, Le AD. Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells. 2010; 28(10):1856-1868.CrossRefGoogle Scholar
  21. 21.
    Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211-228.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • O. Yu. Alekseeva
    • 1
  • P. I. Bobyleva
    • 1
  • E. R. Andreeva
    • 1
    Email author
  1. 1.State Research Center Institute of Biomedical ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations