Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 168, Issue 1, pp 79–83 | Cite as

The Role of Inducible NOS2 Gene Polymorphism in the Development of Essential Arterial Hypertension

  • L. V. TopchievaEmail author
  • O.V. Balan
  • V. A. Korneeva
  • I. E. Malysheva
GENETICS
  • 4 Downloads

The risk of essential arterial hypertension was assessed in carriers of the NOS2 gene variants (rs1800482 (-954G>C), rs3730017 (C>T)). In subjects carrying C allele (rs1800482), the risk for essential arterial hypertension developing was higher by 1.7 times (OR=1.712, 95%CI 1.07-2.74), while the presence of T-allele (rs3730017) had a protective effect (OR=0.304, 95%CI 0.192-0.482). In patients with essential arterial hypertension, the presence of the C allele (rs1800482) was associated with a higher content of NO metabolites in the blood plasma. A positive correlation was found between the plasma content of nitrites and nitrates and the level of transcripts of VCAM1, ICAM1 genes in peripheral blood leukocytes. We found the influence of the C allele carriership on the expression VCAM1 and ICAM1 genes in patients with essential hypertension. It was hypothesized that this polymorphic site in the NOS2 gene can be involved in the development of endothelial dysfunction and essential arterial hypertension through modulation of NO level under condition of inflammation.

Key Words

essential arterial hypertension NOS2 gene nitrogen oxide metabolites VCAM1 gene transcripts ICAM1 gene transcripts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Diagnosis and treatment of hypertension. Russian recommendations (fourth revision). Sistemn. Gipertenzii. 2010;(3):5-26. Russian.Google Scholar
  2. 2.
    Metelskaya VA, Gumanova NG. Screening as a method for determining the serum level of nitric oxide metabolites. Klin. Lab. Diagnost. 2005;(6):15-18. Russian.Google Scholar
  3. 3.
    Fletcher RH, Fletcher SW, Wagner EH. Clinical Epidemiology. Moscow, 1998. Russian.Google Scholar
  4. 4.
    Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur. Heart J. 2012;33(7):829-837.CrossRefGoogle Scholar
  5. 5.
    Gardener H, Beecham A, Cabral D, Yanuck D, Slifer S, Wang L, Blanton SH, Sacco RL, Juo S.H, Rundek T. Carotid plaque and candidate genes related to inflammation and endothelial function in Hispanics from northern Manhatton. Stroke. 2011;42(4):889-896.CrossRefGoogle Scholar
  6. 6.
    Kawaguchi Y, Tochimoto A, Hara M, Kawamoto M, Sugiura T, Katsumata Y, Okada J, Kondo H, Okubo M, Kamatani N. NOS2 polymorphisms associated with the susceptibility to pulmonary arterial hypertension with systemic sclerosis: contribution to the transcriptional activity. Arthritis Res. Ther. 2006;8(4). R104.CrossRefGoogle Scholar
  7. 7.
    Kun JF, Mordmüller B, Perkins DJ, May J, Mercereau-Puijalon O, Alpers M, Weinberg JB, Kremsner PG. Nitric oxide synthase 2(Lambaréné) (G-954C), increased nitric oxide production, and protection against malaria. J. Infect. Dis. 2001;184(3):330-336.CrossRefGoogle Scholar
  8. 8.
    Levesque MC, Hobbs MR, Anstey NM, Vaughn TN, Chancellor JA, Pole A, Perkins DJ, Misukonis MA, Chanock SJ, Granger DL, Weinberg JB. Nitric oxide synthase type 2 promoter polymorphisms, nitric oxide production and disease severity in Tanzanian children with malaria. J. Infect. Dis. 1999;180(6):1994-2002.CrossRefGoogle Scholar
  9. 9.
    Levy AS, Chung JC, Kroetsch JT, Rush JW. Nitric oxide and coronary vascular endothelium adaptations in hypertension. Vasc. Health Risk Manag. 2009;5:1075-1087.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Nikkari ST, Määttä KM, Kunnas TA. Functional inducible nitric oxide synthase gene variants associate with hypertension. Medicine. 2014;94(46). ID e1958. doi:  https://doi.org/10.1097/MD.0000000000001958 CrossRefGoogle Scholar
  11. 11.
    Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007;87(1):315-424.CrossRefGoogle Scholar
  12. 12.
    Pinto Lde F, Compri CM, Fornari JV, Bartchewsky W, Cintra DE, Trevisan M, Carvalho Pde O, Ribeiro ML, Velloso LA, Saad MJ, Pedrazzoli J Jr, Gambero A. The immunosuppressant drug, thalidomide, improves hepatic alterations induced by a high-fat diet in mice. Liver Int. 2010;30(4):603-610.CrossRefGoogle Scholar
  13. 13.
    Rajan S, Ye J, Bai S, Huang F, Guo YL. NF-kappaB, but not p38 MAP kinase, is required for TNF-alpha-induced expression of cell adhesion molecules in endothelial cells. J. Cell. Biochem. 2008;105(2):477-486.CrossRefGoogle Scholar
  14. 14.
    Steyers CM 3rd, Miller FJ Jr. Endothelial dysfunction in chronic inflammatory diseases. Int. J. Mol. Sci. 2014;15(7):11,324-11,349.CrossRefGoogle Scholar
  15. 15.
    Veldman BA, Spiering W, Doevendans PA, Vervoort G, Kroon AA, de Leeuw PW, Smits P. The Glu298Asp polymorphism of the NOS3 gene as a determinant of the baseline production of nitric oxide. J. Hypertens. 2002;20(10):2023-2027.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • L. V. Topchieva
    • 1
    Email author
  • O.V. Balan
    • 1
  • V. A. Korneeva
    • 2
  • I. E. Malysheva
    • 1
  1. 1.Institute of Biology, Federal Research Center Karelian Research CentreRussian Academy of SciencesPetrozavodskRussia
  2. 2.Petrozavodsk State UniversityPetrozavodskRussia

Personalised recommendations