Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 168, Issue 1, pp 72–75 | Cite as

Effects of Temperature on the Ability of Metabolites from Permafrost Microorganisms to Activate the Synthesis of Systemic Cytokines by Mononuclear Cells

  • L. F. KalenovaEmail author
  • S. S. Kolyvanova
Article
  • 8 Downloads

The effects of metabolites of Bacillus sp. strain M3 and Bacillus megaterium strain 8/75-1 isolated from permafrost formations, as well as a medicinal Bacillus cereus strain IP5832 on the secretion of TNFα, IL-1β, and IL-10 by mononuclear cells of human peripheral blood depending on the temperature of bacteria culturing (-16oC, -5oC, and 42oC) were studied. Metabolites of 8/75-1 and M3 strains cultured at 42oC produced more potent stimulating effect on TNFα and IL-10 synthesis than metabolites from these bacteria cultured at -16oC and -5oC (p<0.01). Temperature did not affect the ability of metabolites to modulate IL-1β synthesis in all bacterial strains and the ability of IP5832 strain metabolites to modulate TNFα production. IL-10 secretion was minimum under the effect of metabolites of IP5832 strain cultured at 42oC. The TNFα/IL-10 and IL-1β/IL-10 ratios indicated that metabolites of permafrost bacteria cultured at 42oC can shift the balance towards the synthesis of proinflammatory cytokines.

Key Words

metabolites of permafrost microorganisms cytokines TNFα IL-1β and IL-10 mononuclear cells temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kalenova LF, Kolyvanova SS, Bazhin AS, Besedin IM, Mel’nikov VP. Effects of Secondary Metabolites of Permafrost Bacillus sp. on Cytokine Synthesis by Human Peripheral Blood Mononuclear Cells. Bull. Exp. Biol. 2017;163(2):235-238. doi:  https://doi.org/10.1007/s10517-017-3774-2 CrossRefGoogle Scholar
  2. 2.
    Kalenova LF, Melnikov VP. The cryosphere ecosystems — a source of microorganisms with original biological potential. Arktika: Ekol. Ekom. 2018;(3):56-64. Russian.Google Scholar
  3. 3.
    Kalyonova LF, Novikova MA, Subbotin AM, Bazhin AS. Effects of temperature on biological activity of permafrost microorganisms. Bull. Exp. Biol. Med. 2015;158(6):772-775. doi:  https://doi.org/10.1007/s10517-015-2859-z CrossRefPubMedGoogle Scholar
  4. 4.
    Markova YA, Belovezhets LA, Alekseenko AL. Variability of enterobacteria fermentative complement depending on culturing temperature. Izv. Irk. Gos. Univer. Ser.: Biol. Ekol. 2008;1(1):18-21. Russian.Google Scholar
  5. 5.
    Mokhov II, Eliseev AV. Modeling of Global Climate Variations in the 20th–23rd Centuries with New RCP Scenarios of Anthropogenic Forcing. Dokl. Earth Sci. 2012;443(2):532-536. doi:  https://doi.org/10.1134/S1028334X12040228 CrossRefGoogle Scholar
  6. 6.
    Nemirovskaya TI, Kovtun VP, Abramtseva MV, Alexandrova NV, Tarasov AP, Salakhova RD, Volkov VA, Merkulov VA. Immunomodulators of bacterial origin registered in the Russian Federation. Biopreparaty. Prof., Diagnost. Lechenie. 2014;(3):19-26. Russian.Google Scholar
  7. 7.
    Nikolaev YuA, Mulyukin AL, Stepanenko IYu, El’-Registan GI. Autoregulation of stress response in microorganisms. Microbiology (Mikrobiologiya). 2006;75(4):420-426.CrossRefGoogle Scholar
  8. 8.
    Orlova TI, Bulgakova VG, Polin AN. Microbial Secondary Metabolites as Potential Reserve of Pharmaceuticals. Antibiotiki Chimioterapiya. 2014;59(3-4):38-44. Russian.Google Scholar
  9. 9.
    Osipov VI. Biosphere and Environmental Security: an Anniversary Lecture. Moscow, 2017. Russian.Google Scholar
  10. 10.
    Kameka AL, Leonova SN, Rekhov AV. Treatment of open fractures of shin bones complicated with chronic osteomyelitis with use of new methods. Byull. Vost.-Sib. Nauch. Tsentra Ross. Akad. Med. Nauk. 2013;(2-1):171-175. Russian.Google Scholar
  11. 11.
    Chernykh ER, Leplina OY, Tihonova MA, Paltzev AV, Ostanin AA. Cytokine Balance in Systemic Inflammation: A New Target for Immunotherapy of Sepsis. Med. Immnunol. 2001;3(3):415-429. Russian.Google Scholar
  12. 12.
    Goordial J, Raymond-Bouchard I, Zolotarov Y, de Bethencourt L, Ronholm J, Shapiro N, Woyke T, Stromvik M, Greer CW, Bakermans C, Whyte L. Cold adaptive traits revealed by comparative genomic analysis of the eurypsychrophile Rhodococcus sp. JG3 isolated from high elevation McMurdo Dry Valley permafrost, Antarctica. FEMS Microbiol. Ecol. 2016;92(2). pii: fiv154. doi:  https://doi.org/10.1093/femsec/fiv154
  13. 13.
    Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NP. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol. Mol. Biol. Rev. 2006;70(1):222-252.CrossRefGoogle Scholar
  14. 14.
    Mykytczuk NC, Foote SJ, Omelon CR, Southam G, Greer CW, Whyte LG. Bacterial growth at -15 oC; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J. 2013;7(6):1211-1226.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tyumen State UniversityTyumenRussia
  2. 2.Federal Research Centre Tyumen Scientific CentreSiberian Division of the Russian Academy of SciencesTyumenRussia

Personalised recommendations