Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 168, Issue 1, pp 18–23 | Cite as

Structure of Rhythms of Blood Pressure, Heart Rate, Excretion of Electrolytes, and Secretion of Melatonin in Normotensive and Spontaneously Hypertensive Rats Maintained under Conditions of Prolonged Daylight Duration

  • M. L. BlagonravovEmail author
  • A. A. Bryk
  • E. V. Medvedeva
  • V. A. Goryachev
  • S. M. Chibisov
  • A. O. Kurlaeva
  • E. D. Agafonov
Article
  • 8 Downloads

We studied the structure of rhythms of BP, HR (by telemetric monitoring), electrolyte excretion (by capillary electrophoresis), and products of epiphyseal melatonin (by the urinary concentration of 6-sulfatoxymelatonin measured by ELISA) in normotensive Wistar-Kyoto rats and spontaneously hypertensive SHR rats maintained at 16/8 h and 20/4 h light-dark regimes. In Wister-Kyoto rats exposed to prolonged daylight, we observed changes in the amplitude, rhythm power (% of rhythm), and range of oscillations of systolic BP; HR mezor decreased. In SHR rats, mezor of HR also decreased, but other parameters of rhythms remained unchanged. Changes in electrolyte excretion were opposite in normo- and hypertensive rats. Under conditions of 20/4 h light-dark regime, daytime melatonin production tended to increase in normotensive rats and significantly increased in SHR rats. At the same time, nighttime melatonin production did not change in both normotensive and hypertensive animals. As the secretion of melatonin has similar features in animals of both lines, we can say that the epiphyseal component of the “biological clock” is not the only component of the functional system that determines the response of the studied rhythms to an increase in the duration of light exposure.

Key Words

arterial hypertension biological rhythms excessive exposure to light melatonin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bespyatykh AYu, Brodskii VYa, Burlakova OV, Golichenkov VA, Voznesenskaya LA, Kolesnikov DB, Molchanov AYu, Rapoport SI. Melatonin: Theory and Practice. Rapoport SI, Golichenkov VA, eds. Moscow, 2009. Russian.Google Scholar
  2. 2.
    Chronobiology and Chronomedicine. Chibisov SM, Rapoport SI, Blagonravov ML, eds. Moscow, 2018. Russian.Google Scholar
  3. 3.
    Abeysuriya RG, Lockley SW, Robinson PA, Postnova S. A unified model of melatonin, 6-sulfatoxymelatonin, and sleep dynamics. J. Pineal Res. 2018;64(4). ID e12474. doi:  https://doi.org/10.1111/jpi.12474 CrossRefGoogle Scholar
  4. 4.
    Amaral FGD, Cipolla-Neto J. A brief review about melatonin, a pineal hormone. Arch. Endocrinol. Metab. 2018;62(4):472-479.CrossRefGoogle Scholar
  5. 5.
    Chang AM, Aeschbach D, Duffy JF, Czeisler CA. Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next morning alertness. Proc. Natl Acad. Sci. USA. 2015;112(4):1232-1237.CrossRefGoogle Scholar
  6. 6.
    Chellappa SL, Lasauskaite R, Cajochen C. In a heartbeat: light and cardiovascular physiology. Front. Neurol. 2017;8. ID 541. doi:  https://doi.org/10.3389/fneur.2017.00541
  7. 7.
    Davies TW, Smyth T. Why artificial light at night should be a focus for global change research in the 21st century. Glob. Chang. Biol. 2018;24(3):872-882.CrossRefGoogle Scholar
  8. 8.
    Münch M, Nowozin C, Regente J, Bes F, De Zeeuw J, Hädel S, Wahnschaffe A, Kunz D. Blue-enriched morning light as a countermeasure to light at the wrong time: effects on cognition, sleepiness, sleep, and circadian phase. Neuropsychobiology. 2016;74(4):207-218.CrossRefGoogle Scholar
  9. 9.
    Najjar RP, Wolf L, Taillard J, Schlangen LJ, Salam A, Cajochen C, Gronfier C. Chronic artificial blue-enriched white light is an effective countermeasure to delayed circadian phase and neurobehavioral decrements. PLoS One. 2014;9(7). ID e102827. doi:  https://doi.org/10.1371/journal.pone.0102827 CrossRefGoogle Scholar
  10. 10.
    Reiter RJ, Tan DX, Korkmaz A, Erren TC, Piekarski C, Tamura H, Manchester LC. Light at night, chronodisruption, melatonin suppression, and cancer risk: a review. Crit. Rev. Oncog. 2007;13(4):303-328.CrossRefGoogle Scholar
  11. 11.
    Simko F, Baka T, Paulis L, Reiter RJ. Elevated HR and nondipping HR as potential targets for melatonin: a review. J. Pineal Res. 2016;61(2):127-137.CrossRefGoogle Scholar
  12. 12.
    Solocinski K, Gumz ML. The circadian clock in the regulation of renal rhythms. J. Biol. Rhythms. 2015;30(6):470-486.CrossRefGoogle Scholar
  13. 13.
    Touitou Y, Reinberg A, Touitou D. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: Health impacts and mechanisms of circadian disruption. Life Sci. 2017;173:94-106.CrossRefGoogle Scholar
  14. 14.
    Zuther P, Gorbey S, Lemmer B. Chronos-Fit 1.06, 2009. URL: http://chronos-fit.sharewarejunction.com

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. L. Blagonravov
    • 1
    Email author
  • A. A. Bryk
    • 1
  • E. V. Medvedeva
    • 1
  • V. A. Goryachev
    • 1
  • S. M. Chibisov
    • 1
  • A. O. Kurlaeva
    • 1
  • E. D. Agafonov
    • 1
  1. 1.V. A. Frolov Department of General Pathology and Pathophysiology, Institute for Medicine, Peoples’ Friendship University of RussiaMoscowRussia

Personalised recommendations