Bulletin of Experimental Biology and Medicine

, Volume 168, Issue 1, pp 1–4 | Cite as

Cortical Somatosensory Neurons in WAG/Rij Rats Transform Firing Evoked by Simulation of Posterior Thalamic Nucleus from Tonic to Phasic at Age of 6 Months

  • D. A. Tsvetaeva
  • E. Yu. Sitnikova
  • V. V. RaevskyEmail author

Functional peculiarities of paralemniscal subdivision of the thalamocortical system were examined in normal Wistar and in WAG/Rij rats genetically prone to absence epilepsy. In 6-7-month-old WAG/Rij characterized by developed epileptic activity, the response of cortical somatosensory neurons to single electrical stimulation of the posterior thalamic nucleus was phasic, whereas in normal Wistar rats, similar reaction was tonic. The study views this phasic response as neural equivalent of spike-wave discharges known as typical EEG symptom of absence epilepsy.

Key Words

neuron somatosensory cortex thalamus WAG/Rij rats 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sitnikova EYu, Raevsky VV. Lemniscal and paralemniscal afferent pathways in rodents’ trigeminal system are integrated at the level of the somatosensory cortex. Zh. Vyssh. Nern. Deyat. 2009;59(1):98-106. Russian.Google Scholar
  2. 2.
    Tsvetaeva DA, Sitnikova EY, Raevsky VV. The Responses of Neurons of the Somatosensory Cortex to Stimulation of the Posterior Thalamus (PO) in WAG/Rij Rats Genetically Predisposed to Absence Epilepsy. Dokl. Biol. Sci. 2018;480(1):75-77.CrossRefGoogle Scholar
  3. 3.
    Bazyan AS, van Luijtelaar G. Neurochemical and behavioral features in genetic absence epilepsy and in acutely induced absence seizures. ISRN Neurol. 2013;2013. ID 875834. doi: 10.1155/2013/875834CrossRefGoogle Scholar
  4. 4.
    Coenen AM, Van Luijtelaar EL. Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats. Behav. Genet. 2003;33(6):635-655.CrossRefGoogle Scholar
  5. 5.
    Deschênes M, Bourassa J, Pinault D. Corticothalamic projections from layer V cells in rat are collaterals of long-range corticofugal axons. Brain Res. 1994;664(1-2):215-219.CrossRefGoogle Scholar
  6. 6.
    Diamond M.E. Neurobiology. Parallel sensing. Nature 2000;406:245, 247.CrossRefGoogle Scholar
  7. 7.
    Lüttjohann A, van Luijtelaar G. Dynamics of networks during absence seizure’s on- and offset in rodents and man. Front. Physiol. 2015;6. ID 16. doi:
  8. 8.
    Seidenbecher T, Staak R, Pape HC. Relations between cortical and thalamic cellular activities during absence seizures in rats. Eur. J. Neurosci. 1998;10(3):1103-1112.CrossRefGoogle Scholar
  9. 9.
    Sitnikova E, van Luijtelaar G. Cortical control of generalized absence seizures: effect of lidocaine applied to the somatosensory cortex in WAG/Rij rats. Brain Res. 2004;1012(1-2):127-137.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • D. A. Tsvetaeva
    • 1
  • E. Yu. Sitnikova
    • 1
  • V. V. Raevsky
    • 1
    Email author
  1. 1.Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of SciencesMoscowRussia

Personalised recommendations