Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 167, Issue 6, pp 767–770 | Cite as

Gene Polymorphism of Xenobiotic Biotransformation Enzymes in Patients with Classical Ph-Negative Myeloproliferative Neoplasms

  • V. A. OvsepyanEmail author
  • E. V. Tregubova
  • A. S. Luchinin
  • N. V. Minaeva
GENETICS

The correlation of gene polymorphisms rs4025935 (large deletion), rs1695 (313A>G), rs71748309 (large deletion), and rs1800566 (609C>T) of GSTM1, GSTT1, and NQO1 genes encoding glutathione-S-transferases (GST) M1, P1, and T1 and NADPH-quinone oxidoreductase with the risk of development of classical Ph-negative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, and primary myelofibrosis) was studied in the Caucasian ethnicity population of Vyatka region of the Russian Federation. It was found that NQO1*609T allele, NQO1*609T genotypes, and homozygous carriage of a deletion (null) allele of GSTT1 gene are associated with the risk of development of myeloproliferative neoplasms (OR=1.29, 95%CI=1.02-1.64, p=0.04; OR=1.39, 95%CI=1.04-1.85, p=0.03; and OR=1.48, 95%CI=1.03-2.12, p=0.03, respectively). However, no influence of GSTM1 and GSTP1 gene polymorphisms on the risk of development of myeloproliferative disorders was registered.

Key Words

Ph-negative myeloproliferative neoplasms GSTM1 GSTP1 GSTT1 and NQO1 genes polymorphisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Misyurin VA, Misyurin AV, Kesayeva LA, Finashutina YuP, Misyurina YeN, Soldatova IN, Krutov AA, Lyzhko NA, Akhlynina TV, Lukina AYe, Kolosheynova TI, Novitskaya NV, Arshanskaya YeG, Ovsyannikova YeG, Golubenko RA, Lapin VA, Pospelova TI, Tumakov VA, Baryshnikov AYu. New molecular markers of CML progression. Klin. Onkogematol. 2014;7(2):206-212. Russian.Google Scholar
  2. 2.
    Ovsepyan V.A., Vinogradova E.Y., Sherstneva E.S. Cytochrome P4501A1, glutathione S-transferase M1 and T1 gene polymorphisms in chronic myeloid leukemia. Russ. J. Genetics. 2010;46(10):1201-1202.CrossRefGoogle Scholar
  3. 3.
    Ovsepyan VA, Rosin VA, Zagoskina TP. Polymorphisms in CYP1A1, GSTM1, GSTT1 and GSTP1 associated with the risk of chronic lymphocytic leukemia. Med. Genetika. 2010;9(4):25-29. Russian.Google Scholar
  4. 4.
    Anderson LA, Duncombe AS, Hughes M, Mills ME, Wilson JC, McMullin MF. Environmental, lifestyle and familial/ethnic factors associated with myeloproliferative neoplasms. Am. J. Hematol. 2012;87(2):175-182.CrossRefGoogle Scholar
  5. 5.
    Bin Q, Luo J. Role of polymorphisms of GSTM1, GSTT1 and GSTP1 Ile105Val in Hodgkin and non-Hodgkin lymphoma risk: a Human Genome Epidemiology (HuGE) review. Leuk. Lymphoma. 2012;54(1):14-20.CrossRefGoogle Scholar
  6. 6.
    Dong LM, Potter JD, White E, Ulrich CM, Cardon LR, Peters U. Genetic susceptibility to cancer: the role of polymorphisms in candidate genes. JAMA. 2008;299(20):2423-2436.CrossRefGoogle Scholar
  7. 7.
    Gross-Davis CA, Heavner K, Frank AL, Newschaffer C, Klotz J, Santella RM, Burstyn I. The role of genotypes that modify the toxicity of chemical mutagens in the risk for myeloproliferative neoplasms. Int. J. Environ. Res. Public Health. 2015;12(3):2465-2485.CrossRefGoogle Scholar
  8. 8.
    He HR, You HS, Sun JY, Hu SS, Ma Y, Dong YL, Lu J. Glutathione S-transferase gene polymorphisms and susceptibility to acute myeloid leukemia: meta-analyses. Jpn J. Clin. Oncol. 2014;44(11):1070-1081.CrossRefGoogle Scholar
  9. 9.
    He HR, Zhang XX, Sun JY, Hu SS, Ma Y, Dong YL, Lu J. Glutathione S-transferase gene polymorphisms and susceptibility to chronic myeloid leukemia. Tumor Biol. 2014;35(6):6119-6125.CrossRefGoogle Scholar
  10. 10.
    Lajin B, Alachkar A. The NQO1 polymorphism C609T (Pro187Ser) and cancer susceptibility: a comprehensive metaanalysis. Br. J. Cancer. 2013;109(5):1325-1337.CrossRefGoogle Scholar
  11. 11.
    Lajin B, Alachkar A. Detection of the NQO1 C609T polymorphism by a simple one step Tri-primer Amplification Refractory Mutation System-PCR method. Am. J. Biomed. Sci. 2011;3(2):77-83.CrossRefGoogle Scholar
  12. 12.
    Ovsepyan VA, Luchinin AS, Zagoskina TP. Role of glutathione-S-transferase M1 (GSTM1) and T1 (GSTT1) genes in the development and progress of chronic myeloid leukemia and in the formation of response to imatinib therapy. Bull. Exp. Biol. Med. 2014;158(2):242-245.CrossRefGoogle Scholar
  13. 13.
    Skoda RC, Duek A, Grisouard J. Pathogenesis of myeloproliferative neoplasms. Exp. Hematol. 2015;43(8):599-608.CrossRefGoogle Scholar
  14. 14.
    Yuille M, Condie A, Hudson C, Kote-Jarai Z, Stone E, Eeles R, Matutes E, Catovsky D, Houlston R. Relationship between glutathione S-transferase M1, T1, and P1 polymorphisms and chronic lymphocytic leukemia. Blood. 2002;99(11):4216-4218.CrossRefGoogle Scholar
  15. 15.
    Zhao T, Ma F, Yin F. Role of polymorphisms of GSTM1, GSTT1 and GSTP1 Ile105Val in childhood acute lymphoblastic leukemia risk: an updated meta-analysis. Minerva Pediatr. 2018;70(2):185-196.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. A. Ovsepyan
    • 1
    Email author
  • E. V. Tregubova
    • 1
  • A. S. Luchinin
    • 1
  • N. V. Minaeva
    • 1
  1. 1.Kirov Research Institute of Hematology and Blood Transfusion, Federal Medical and Biological Agency of the Russian FederationKirovRussia

Personalised recommendations