Bulletin of Experimental Biology and Medicine

, Volume 167, Issue 5, pp 681–684 | Cite as

Laboratory Monitoring of Bone Tissue Remodeling after Augmentation of Impression Intraarticular Fracture with Different Types of Bone Graft

  • M. V. GilevEmail author
  • V. V. Bazarny
  • E. A. Volokitina
  • L. G. Polushina
  • A. Yu. Maksimova
  • Ya. E. Kazakova

The effects of bone graft materials on the inflammatory response and biochemical markers of bone remodeling were studied on a rabbit model of fracture augmentation with the following grafts: β-tricalcium phosphate, demineralized bone matrix, nanostructured carbon implant, and porous titanium implant made by additive 3D printing. The markers of bone remodeling and the blood system response in the postoperative period were studied. It was found that porous titanium implant and β-tricalcium phosphate induced osteogenesis and minimized osteoclastic resorption. Augmentation with nanostructured carbon implant and demineralized bone matrix stimulated the processes of osteoclastic resorption.

Key Words

fracture osseointegration augmentation bone remodeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bazarnyy VV, Isaykin AI. Immunodiagnistics and immunocorreection after skeletal trauma. Vestn. Ural. Med. Akad. Nauki. 2014;(1):50-51. Russian.Google Scholar
  2. 2.
    Bazarnyi VV, Isaikin AI, Krokhina NB, Beresneva OYu, Vlasov AA, Shchekoldin PI. Cellular mechanisms underlying realization of the effects of physical factors on bone tissue remodeling. Vestn. Travmat. Ortoped. 2010;2(2):18-20. Russian.Google Scholar
  3. 3.
    Gilev MV. Surgical treatment of intraarticular tibial plateau fractures. Genii Ortopedii. 2018;24;(2):134-141. Russian.CrossRefGoogle Scholar
  4. 4.
    Gilev MV. Surgical management of intra-articular impression distal radius fracture. Genii Ortopedii. 2014;(1):75-81. Russian.Google Scholar
  5. 5.
    Ladonin SV. Features of reparative osteogenesis in cases of experimental chronic osteomyelitis after the plastic replacement of bone cavity with demineralized bone implant. Vrach-Aspirant. 2011;45(2.4):586-592. Russian.Google Scholar
  6. 6.
    Gilev MV, Kutepov SM, Volokitina EA, Antoniadi YV, Koshelev VS, Borisov SA, Kazakova YE, Izmodenova MY, Lipatov SG. Patent RU No. 2669047. Modeling method of the intraarticular impression traction of proximal tibia. Bull. No. 28. Published October 5, 2018.Google Scholar
  7. 7.
    Polupan PV. Bone grafting and dental implantation: a look at the problem. Med. Alfavit. 2014;3(13):32-35. Russian.Google Scholar
  8. 8.
    Tikhilov RM, Fomin NF, Koryshkov NA, Emelyanov VG, Privalov AM. Current aspects of treatment of hindfoot fracture complications. Travmatol. Ortoped. Rossii. 2009;(52):144-149. Russian.Google Scholar
  9. 9.
    Daentzer D. Implant reaction: PEEK versus Titan – Which material promotes best osteogenesis? Z. Orthop. Unfall. 2015;153(3):244.CrossRefGoogle Scholar
  10. 10.
    Shah A, Naranje S, Araoye I, Elattar O, Godoy-Santos AL, Cesar C. Netto. Role of bone grafts and bone graft substitutes in isolated subtalar joint arthrodesis. Acta Ortop. Bras. 2017;25(5):183-187.Google Scholar
  11. 11.
    Vlot MC, den Heijer M, de Jongh RT, Vervloet MG, Lems WF, de Jonge R, Obermayer-Pietsch B, Heijboer AC. Clinical utility of bone markers in various diseases. Bone. 2018;114:215-225.CrossRefGoogle Scholar
  12. 12.
    Yoon BH, Yu W. Clinical Utility of Biochemical Marker of Bone Turnover: Fracture Risk Prediction and Bone Healing. J. Bone Metab. 2018;25(2):73-78.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. V. Gilev
    • 1
    Email author
  • V. V. Bazarny
    • 1
  • E. A. Volokitina
    • 1
  • L. G. Polushina
    • 1
  • A. Yu. Maksimova
    • 1
  • Ya. E. Kazakova
    • 1
  1. 1.Ural State Medical University, Ministry of Health of the Russian FederationYekaterinburgRussia

Personalised recommendations