Advertisement

State of Stress-Marker Organs in Rats after a Single Exposure to Long-Term Stress and Treatment with Lipopolysaccharide

  • I. V. Alekseeva
  • A. Yu. Abramova
  • A. Yu. Kozlov
  • E. V. Koplik
  • A. S. Pertsov
  • D. A. Lyadov
  • E. V. Nikenina
  • S. S. PertsovEmail author
Article
  • 4 Downloads

We studied the effect of LPS on the state of stress-marker organs in rats at various periods after a single exposure to long-term stress on the model of 24-h immobilization. The animals were intraperitoneally injected with LPS in a dose of 100 μg/kg immediately after the negative emotiogenic exposure. Changes in physiological parameters were evaluated 3 h, 1 day, and 8 days after immune stimulation. Acute stress was accompanied by a decrease in the weight of the thymus during all stages of the post-stress period. An increase in the relative weight of theadrenal glands in animals under these conditions was observed only on day 8 after restraint stress. The induction of immune reactions due to systemic treatment with LPS was shown to prevent involution of the spleen in the late stage after a single exposure to long-term stress (day 8). Hypertrophy of the adrenal glands, which serves as one of the typical reactions of mammals to negative emotiogenic factors, was not revealed during the post-stress period after antigenic stimulation. These data hold much promise for the development of new approaches to the use of immunoactive substances to prevent or reduce the severity of physiological changes after emotiogenic loads.

Key Words

stress-marker organs rats single exposure to long-term stress post-stress period lipopolysaccharide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramova AYu, Pertsov SS. Lipopolysaccharides and nociperception. Ross. Zh. Boli. 2014;(2):30-38. Russian.Google Scholar
  2. 2.
    Abramova AY, Pertsov SS, Kozlov AY, Nikenina EV, Kalinichenko LS, Dudnik EN, Alekseeva IV. Cytokine levels in rat blood and brain structures after administration of lipopolysaccharide. Bull. Exp. Biol. Med. 2013;155(4):417-420.CrossRefGoogle Scholar
  3. 3.
    Vyborova IS, Udval H., Vasilyeva LS, Makarova NG. The hepatical structure in the dynamics of the immobilization stress. Sib. Med. Zh. (Irkutsk). 2005;52(3):30-33. Russian.Google Scholar
  4. 4.
    Ivanova IK, Shantanova LN, Balkhayev IM, Lonshakova KS. The effects of phytoadaptogene “Polyphytoton” on the structure of white rat’s adrenal by immobilizative stress. Acta Biomedica Scientifica. 2011;(1-2):142-144. Russian.Google Scholar
  5. 5.
    Korneva EA, Shanin SN, Novikova NS, Pugach VA. Cellmolecular basis of neuroimmune interactions during stress. Ross. Fiziol. Zh. 2017;103(3):217-229. Russian.Google Scholar
  6. 6.
    Pertsov SS. Role of the hypothalamic suprachiasmatic nucleus in the effect of melatonin on the thymus, adrenal glands, and spleen in rats. Bull. Exp. Biol. Med. 2006;141(4):383-386.CrossRefGoogle Scholar
  7. 7.
    Pertsov SS, Alekseeva IV, Koplik EV, Sharanova NE, Kirbaeva NV, Gapparov MM. Dynamics of locomotor activity and heat production in rats after acute stress. Bull. Exp. Biol. Med. 2014;157(1):10-14.CrossRefGoogle Scholar
  8. 8.
    Pertsov SS, Grigorchuk OS, Koplik EV, Abramova AY, Chekmareva NY, Chekhlov VV. State of Stress-Marker Organs in Rats with Various Behavioral Characteristics during Repeated Stress Exposures. Bull. Exp. Biol. Med. 2015;160(7):20-23.CrossRefGoogle Scholar
  9. 9.
    Pertsov SS, Koplik EV, Kalinichenko LS. Comparative analysis of the effect of cytokines on the thymus, adrenal glands, and spleen in rats with various behavioral characteristics. Bull. Exp. Biol. Med. 2011;150(3):277-280.CrossRefGoogle Scholar
  10. 10.
    Serikov VS, Lyashev YuD. The influence of melatonin on lipid peroxidation and antioxidant enzymes activity during multiply repetitive stress actions. Ross. Fiziol. Zh. 2013;99(11):1294-1299. Russian.Google Scholar
  11. 11.
    Tyurenkov IN, Filina IS, Gumilevskiy BY, Volotova EV, Bakulin DA. The influence of immunization on adaptation by chronic stress of animals. Fundament. Issled. 2014;(7-2):368-371. Russian.Google Scholar
  12. 12.
    Elwenspoek MMC, Kuehn A, Muller CP, Turner JD. The effects of early life adversity on the immune system. Psychoneuroendocrinology. 2017;82:140-154.CrossRefGoogle Scholar
  13. 13.
    Gianaros PJ, Wager TD. Brain-body pathways linking psychological stress and physical health. Curr. Dir. Psychol. Sci. 2015;24(4):313-321.CrossRefGoogle Scholar
  14. 14.
    Naryzhnaya NV, Maslov LN, Vychuzhanova EA, Sementsov AS, Podoksyonov YK, Portnichenko AG, Lishmanov YB. Effect of hypoxic preconditioning on stress reaction in rats. Bull. Exp. Biol. Med. 2015;159(4):450-452.CrossRefGoogle Scholar
  15. 15.
    Stankiewicz AM, Goscik J, Swiergiel AH, Majewska A, Wieczorek M, Juszczak GR, Lisowski P. Social stress increases expression of hemoglobin genes in mouse prefrontal cortex. BMC Neurosci. 2014;15. ID 130. doi:  https://doi.org/10.1186/s12868-014-0130-6.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • I. V. Alekseeva
    • 1
  • A. Yu. Abramova
    • 1
    • 2
  • A. Yu. Kozlov
    • 1
    • 2
  • E. V. Koplik
    • 1
  • A. S. Pertsov
    • 3
  • D. A. Lyadov
    • 1
    • 3
  • E. V. Nikenina
    • 1
  • S. S. Pertsov
    • 1
    • 2
    Email author
  1. 1.P. K. Anokhin Research Institute of Normal PhysiologyMoscowRussia
  2. 2.A. I. Evdokimov Moscow State Medical and Dental UniversityMinistry of Health of the Russian FederationMoscowRussia
  3. 3.I. M. Sechenov First Moscow State Medical UniversityMinistry of Health of the Russian Federation (Sechenov University)MoscowRussia

Personalised recommendations