Advertisement

Effectiveness of Phenolic Antioxidants in Experimental Model of Benign Prostatic Hyperplasia

  • T. G. BorovskayaEmail author
  • S. I. Kamalova
  • V. A. Grigor’eva
  • M. E. Poluektova
  • A. V. Vychuzhanina
  • A. V. Kuchin
  • I. Yu. Chukicheva
  • E. V. Buravlev
  • T. I. Fomina
  • M. B. Plotnikov
  • V. E. Goldberg
  • A. M. Dygai
GENERAL PATHOLOGY AND PATHOLOGICAL PHYSIOLOGY
  • 3 Downloads

Experimental model of sulpiride-provoked benign prostatic hyperplasia was employed to comparatively assess the effect of phenolic antioxidants (dihydroquercetin, p-thyrozol, dibornol, and prostagenin) on prostate morphology. All examined agents decreased the degree of hyperplasia in acinar epithelium; the greatest efficacy was demonstrated by prostagenin. Moreover, dihydroquercetin and p-thyrozol increased the cross-section area of acinar lumina and prostate volume, which is inadmissible in this pathology. These results suggest that the use of phenolic antioxidants in the therapy of benign prostatic hyperplasia should be strictly controlled.

Key Words

rats benign prostatic hyperplasia sulpiride phenolic antioxidants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borovskaja TG, Sergeeva SA, Udut VV, Fomina TI, Jurmazov ZA, Pahomova AV, Poluektova ME, Chemerova JA, Rumpel’ OA. Modification of sulpiride model of benign prostatic hyperplasia for evaluation of the effectiveness of drug therapy. Bull. Exp. Biol. Med. 2011;151(5):588-592.CrossRefGoogle Scholar
  2. 2.
    Borovskaya TG, Fomina TI, Durnev AD, Udut VV, Pakhomova AV, Yurmazov ZA, Dygai AM. Guidelines for preclinical study of prostatotropic activity of new drugs. Manual for Preclinical Studies of New Pharmacological Substances. Part I, Mironov AN, ed. Moscow, 2013. P. 727-739. Russian.Google Scholar
  3. 3.
    Kudryavcev YuV, Sivkov AV. Morphological alteration in benign prostatic hyperplasia tissue. Eksp. Klin. Urol. 2010;(1):18-22. Russian.Google Scholar
  4. 4.
    Neimark AI, Davydov AV, Aliev RT. The effects of combination therapy with 5a-reductase inhibitor and a-blocker on the prognosis of BPH. Urologiya. 2018;(2):62-66. Russian.Google Scholar
  5. 5.
    Bechis SK, Otsetov AG, Ge R, Olumi AF. Personalized medicine for the management of benign prostatic hyperplasia. J. Urol. 2014;192(1):16-23.CrossRefGoogle Scholar
  6. 6.
    Eleazu C, Eleazu K, Kalu W. Management of benign prostatic hyperplasia: could dietary polyphenols be an alternative to existing therapies? Front. Pharmacol. 2017;8. ID 234. doi:  https://doi.org/10.3389/fphar.2017.00234
  7. 7.
    Henning SM, Aronson W, Niu Y, Conde F, Lee NH, Seeram NP, Lee RP, Lu J, Harris DM, Moro A, Hong J, Pak-Shan L, Barnard RJ, Ziaee HG, Csathy G, Go VL, Wang H, Heber D. Tea polyphenols and theaflavins are present in prostate tissue of humans and mice after green and black tea consumption. J. Nutr. 2006;136(7):1839-1843.CrossRefGoogle Scholar
  8. 8.
    Lephart ED. Review: anti-oxidant and anti-aging properties of equol in prostate health (BPH). Open J. Endocr. Metab. Diseases. 2014;4(1). doi:  https://doi.org/10.4236/ojemd.2014.41001 CrossRefGoogle Scholar
  9. 9.
    Middleton E Jr, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000;52(4):673-751.PubMedGoogle Scholar
  10. 10.
    Minciullo PL, Inferrera A, Navarra M, Calapai G, Magno C, Gangemi S. Oxidative stress in benign prostatic hyperplasia: a systematic review. Urol. Int. 2015;94(3):249-254.CrossRefGoogle Scholar
  11. 11.
    Roumeguère T, Sfeir J, El Rassy E, Albisinni S, Van Antwerpen P, Boudjeltia KZ, Farès N, Kattan J, Aoun F. Oxidative stress and prostatic diseases. Mol. Clin. Oncol. 2017;7(5):723-728.CrossRefGoogle Scholar
  12. 12.
    Thu OK, Nilsen OG, Hellum B. In vitro inhibition of cytochrome P-450 activities and quantification of constituents in a selection of commercial Rhodiola rosea products. J. Pharma. Biol. 2016;54(12):3249-3256.CrossRefGoogle Scholar
  13. 13.
    Udensi UK, Tchounwou PB. Oxidative stress in prostate hyperplasia and carcinogenesis. J. Exp. Clin. Cancer. 2016;35(1). ID 139. doi:  https://doi.org/10.1186/s13046-016-0418-8
  14. 14.
    Vital P, Castro P, Ittmann M. Oxidative stress promotes benign prostatic hyperplasia. Prostate. 2015;76(1):58-67.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • T. G. Borovskaya
    • 1
    Email author
  • S. I. Kamalova
    • 1
  • V. A. Grigor’eva
    • 1
  • M. E. Poluektova
    • 1
  • A. V. Vychuzhanina
    • 1
  • A. V. Kuchin
    • 2
  • I. Yu. Chukicheva
    • 2
  • E. V. Buravlev
    • 2
  • T. I. Fomina
    • 1
  • M. B. Plotnikov
    • 1
  • V. E. Goldberg
    • 3
  • A. M. Dygai
    • 1
  1. 1.E. D. Goldberg Research Institute of Pharmacology and Regenerative MedicineTomsk National Research Medical CenterTomskRussia
  2. 2.Institute of Chemistry, Komi Scientific CenterUral Division of Russian Academy of SciencesSyktyvkarRussia
  3. 3.Research Institute of OncologyTomsk National Research Medical CenterTomskRussia

Personalised recommendations