Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 166, Issue 5, pp 656–660 | Cite as

Transcriptome Guided Drug Combination Suppresses Proliferation of Breast Cancer Cells

  • M. Yu. Shkurnikov
  • A. A. PoloznikovEmail author
  • S. V. Nikulin
  • U. Schumacher
  • D. Wicklein
  • C. Stürken
  • V. V. Galatenko
  • B. Ya. Alekseev
Article

One of actively developing trends in modern pharmacology is the use of the transcriptome analysis for drug repositioning. We have previously detected two molecular markers of relapses in patients with malignant breast tumors: ELOVL5 and IGFBP6. Poor prognosis is associated with low expression of these markers. Here we analyze the effects of simvastatin and a new potential proteasome inhibitor K7174 inducing expression of IGFBP6 and EVOVL5 on the proliferation of breast cancer cells MDA-MB-231 and DU4475. Compound K7174 potentiates the inhibitory effect of simvastatin on the proliferation of DU4475 cells characterized by low expression of ELOVL5-IGFBP6 pair, but not on the proliferation of MDA-MB-231 cells with high expression of these markers.

Key Words

IGFBP6 ELOVL5 breast cancer metastases in vitro model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fujiwara T, Ikeda T, Nagasaka Y, Okitsu Y, Katsuoka Y, Fukuhara N, Onishi Y, Ishizawa K, Ichinohasama R, Tomosugi N, Harigae H. A low-molecular-weight compound K7174 represses hepcidin: possible therapeutic strategy against anemia of chronic disease. PLoS One. 2013;8(9):e75568. doi:  https://doi.org/10.1371/journal.pone.0075568.
  2. 2.
    Galatenko VV, Shkurnikov MY, Samatov TR, Galatenko AV, Mityakina IA, Kaprin AD, Schumacher U, Tonevitsky AG. Highly informative marker sets consisting of genes with low individual degree of differential expression. Sci. Rep. 2015;5. ID 14967. doi:  https://doi.org/10.1038/srep14967.
  3. 3.
    Gerber B, Freund M, Reimer T. Recurrent breast cancer: treatment strategies for maintaining and prolonging good quality of life. Dtsch. Arztebl. Int. 2010;107(6):85-91.Google Scholar
  4. 4.
    Kim JH, Scialli AR. Thalidomide: the tragedy of birth defects and the effective treatment of disease. Toxicol. Sci. 2011;122(1):1-6.CrossRefGoogle Scholar
  5. 5.
    Medina-Franco JL, Giulianotti MA, Welmaker GS, Houghten RA. Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov. Today. 2013;18(9-10):495-501.CrossRefGoogle Scholar
  6. 6.
    Palumbo A, Facon T, Sonneveld P, Bladè J, Offidani M, Gay F, Moreau P, Waage A, Spencer A, Ludwig H, Boccadoro M, Harousseau JL. Thalidomide for treatment of multiple myeloma: 10 years later. Blood. 2008;111(8):3968-3977.CrossRefGoogle Scholar
  7. 7.
    Poloznikov A, Gazaryan I, Shkurnikov M, Nikulin S, Drapkina O, Baranova A, Tonevitsky A. In vitro and in silico liver models: current trends, challenges and opportunities. ALTEX. 2018;35(3):397-412.CrossRefGoogle Scholar
  8. 8.
    Sawada R, Iwata M, Tabei Y, Yamato H, Yamanishi Y. Predicting inhibitory and activatory drug targets by chemically and genetically perturbed transcriptome signatures. Sci. Rep. 2018;8(1):156.CrossRefGoogle Scholar
  9. 9.
    Scannell JW, Blanckley A, Boldon H, Warrington B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov. 2012;11(3):191-200.CrossRefGoogle Scholar
  10. 10.
    Takeda I, Maruya S, Shirasaki T, Mizukami H, Takahata T, Myers JN, Kakehata S, Yagihashi S, Shinkawa H. Simvastatin inactivates beta1-integrin and extracellular signal-related kinase signaling and inhibits cell proliferation in head and neck squamous cell carcinoma cells. Cancer Sci. 2007;98(6):890-899.CrossRefGoogle Scholar
  11. 11.
    Valastyan S, Weinberg RA. Tumor Metastasis: molecular insights and evolving paradigms. Cell. 2011;147(2):275-292.CrossRefGoogle Scholar
  12. 12.
    Valentiner U, Hall DM, Brooks SA, Schumacher U. HPA binding and metastasis formation of human breast cancer cell lines transplanted into severe combined immunodeficient (scid) mice. Cancer Lett. 2005;219(2):233-242.CrossRefGoogle Scholar
  13. 13.
    Verbist B, Klambauer G, Vervoort L, Talloen W; QSTAR Consortium, Shkedy Z, Thas O, Bender A, Göhlmann HW, Hochreiter S. Using transcriptomics to guide lead optimization in drug discovery projects: Lessons learned from the QSTAR project. Drug Discov. Today 2015;20(5):505-513.CrossRefGoogle Scholar
  14. 14.
    Zakhariants AA, Burmistrova OA, Shkurnikov MY, Poloznikov AA, Sakharov DA. Development of a specific substrate-inhibitor panel (Liver-on-a-Chip) for evaluation of cytochrome P450 activity. Bull. Exp. Biol. Med. 2016;162(1):170-174.CrossRefGoogle Scholar
  15. 15.
    Zakharyants AA, Burmistrova OA, Poloznikov AA. The use of human liver cell model and cytochrome P450 substrateinhibitor panel for studies of dasatinib and warfarin interactions. Bull. Exp. Biol. Med. 2017;162(4):515-519.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. Yu. Shkurnikov
    • 1
  • A. A. Poloznikov
    • 1
    Email author
  • S. V. Nikulin
    • 2
  • U. Schumacher
    • 3
  • D. Wicklein
    • 3
  • C. Stürken
    • 3
  • V. V. Galatenko
    • 2
  • B. Ya. Alekseev
    • 1
  1. 1.P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological CenterMinistry of Health of the Russian FederationMoscowRussia
  2. 2.BioClinicum Research CenterMoscowRussia
  3. 3.University Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations