Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 166, Issue 5, pp 626–630 | Cite as

Comparison of Profiles of Extracellular MicroRNA Secreted by Caco-2 Cells from the Apical Side of the Membrane under Static and Microcirculation Conditions

  • S. V. NikulinEmail author
  • T. N. Gerasimenko
  • S. A. Shilin
  • I. N. Gazizov
  • O. V. Kindeeva
  • D. A. Sakharov
Article
  • 8 Downloads

Extracellular microRNA are one of the indicators of the functional state of cells. Culturing of Caco-2 cells under the conditions of microcirculation in a Homunculus microfluidic device allows better simulating natural environment of the body in comparison with static culturing. Impedance spectroscopy (BioClinicum Research Center) was used for non-invasive estimation of the monolayer quality and changes in the cell apical membrane due to the formation of microvilli. Under static conditions, Caco-2 cells release more microRNA from the apical membrane than under microcirculation conditions, while secretion of miR-320a, miR-24-3p, and miR-221-3p microRNA under static conditions can indicate stress of the cells and activation of inflammatory response. Under microcirculation conditions, the expression of laminin-α1 (LAMA1) was lower than under static conditions, which indicates deeper differentiation of cells.

Key Words

impedance spectroscopy TEER Caco-2 microcirculation microfluidicic device 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ayyadurai S, Charania MA, Xiao B, Viennois E, Zhang Y, Merlin D. Colonic miRNA expression/secretion, regulated by intestinal epithelial PepT1, plays an important role in cell-to-cell communication during colitis. PLoS One 2014;9(2):e87614. doi:  https://doi.org/10.1371/journal.pone.0087614.CrossRefGoogle Scholar
  2. 2.
    Cordes F, Brückner M, Lenz P, Veltman K, Glauben R, Siegmund B, Hengst K, Schmidt MA, Cichon C, Bettenworth D. MicroRNA-320a strengthens intestinal barrier function and follows the course of experimental colitis. Inflamm. Bowel Dis. 2016;22(10):2341-2355.CrossRefGoogle Scholar
  3. 3.
    Knyazev EN, Fomicheva KA, Mikhailenko DS, Nyushko KM, Samatov TR, Alekseev BY, Shkurnikov MY. Plasma levels of hsa-miR-619-5p and hsa-miR-1184 differ in prostatic benign hyperplasia and cancer. Bull. Exp. Biol. Med. 2016;161(1):108-111.CrossRefGoogle Scholar
  4. 4.
    Knyazev EN, Nyushko KM, Alekseev BY, Samatov TR, Shkurnikov MY. Suppression of ITGB4 gene expression in PC-3 cells with short interfering RNA induces changes in the expression of β-integrins associated with RGD-receptors. Bull. Exp. Biol. Med. 2015;159(4):541-545.CrossRefGoogle Scholar
  5. 5.
    Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNA using deep sequencing data. Nucleic Acids Res. 2014;42, Database issue):D68-D73.Google Scholar
  6. 6.
    Makarova JA, Maltseva DV, Galatenko VV, Abbasi A, Maximenko DG, Grigoriev AI, Tonevitsky AG, Northoff H. Exercise immunology meets MiRNA. Exerc. Immunol. Rev. 2014;20:135-164.Google Scholar
  7. 7.
    Nikulin SV, Knyazev EN, Poloznikov AA, Shilin SA, Gazizov IN, Zakharova GS, Gerasimenko TN. Expression of SLC30A10 and SLC23A3 transporter mRNA in Caco-2 cells correlates with an increase in the area of the apical membrane. Mol. Biol. (Mosk). 2018;52(4):667-674.Google Scholar
  8. 8.
    Samatov TR, Galatenko VV, Senyavina NV, Galatenko AV, Shkurnikov MYu, Tonevitskaya SA, Sakharov DA, Marx U, Ehrlich H, Schumacher U, Tonevitsky AG. miRNA-mediated expression switch of cell adhesion genes driven by microcirculation in chip. BioChip J. 2017;11(4):262-269.CrossRefGoogle Scholar
  9. 9.
    Samatov TR, Senyavina NV, Galatenko VV, Trushkin EV, Tonevitskaya SA, Alexandrov DE, Shibukhova GP, Schumacher U, Tonevitsky AG. Tumour-like druggable gene expression pattern of CaCo2 cells in microfluidicic chip. BioChip J. 2016;10(3):215-220.CrossRefGoogle Scholar
  10. 10.
    Samatov TR, Shkurnikov MU, Tonevitskaya SA, Tonevitsky AG. Modelling the metastatic cascade by in vitro microfluidicic platforms. Prog. Histochem. Cytochem. 2015;49(4):21-29.CrossRefGoogle Scholar
  11. 11.
    Shkurnikov MY, Makarova YA, Knyazev EN, Fomicheva KA, Nyushko KM, Saribekyan EK, Alekseev BY, Kaprin AD. Profile of microRNA in blood plasma of healthy humans. Bull. Exp. Biol. Med. 2016;160(5):632-634.CrossRefGoogle Scholar
  12. 12.
    Tanimizu N, Kikkawa Y, Mitaka T, Miyajima A. α1- and α5-containing laminins regulate the development of bile ducts via β1 integrin signals. J. Biol. Chem. 2012;287(34):28 586-28 597.CrossRefGoogle Scholar
  13. 13.
    Tonevitsky AG, Agapov II, Shamshiev AT, Temyakov DE, Pohl P, Kirpichnikov MP. Immunotoxins containing A-chain of mistletoe lectin I are more active than immunotoxins with ricin A-chain. FEBS Lett. 1996;392(2):166-168.CrossRefGoogle Scholar
  14. 14.
    Turchinovich A, Tonevitsky AG, Burwinkel B. Extracellular miRNA: a collision of two paradigms. Trends Biochem. Sci. 2016;41(10):883-892.CrossRefGoogle Scholar
  15. 15.
    Yang QQ, Xu XP, Zhao HS, Cai YQ, Pan YM, Xu JQ, Ma QX, Chen ML. Differential expression of microRNA related to irritable bowel syndrome in a rabbit model. J. Dig. Dis. 2017;18(6):330-342.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. V. Nikulin
    • 1
    Email author
  • T. N. Gerasimenko
    • 1
  • S. A. Shilin
    • 1
  • I. N. Gazizov
    • 1
    • 2
  • O. V. Kindeeva
    • 1
    • 2
  • D. A. Sakharov
    • 1
  1. 1.BioClinicum Research CenterMoscowRussia
  2. 2.Far-Easter Federal UniversityVladivostokRussia

Personalised recommendations