Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 166, Issue 5, pp 598–601 | Cite as

The Role of NO Synthase in the Cardioprotective Effect of Substances of Humic Origin on the Model of Ischemia and Reperfusion of Isolated Rat Heart

  • T. V. LasukovaEmail author
  • M. V. Zykova
  • M. V. Belousov
  • A. S. Gorbunov
  • L. A. Logvinova
  • A. M. Dygai
GENERAL PATHOLOGY AND PATHOPHYSIOLOGY
  • 6 Downloads

The cardioprotective and inotropic effects of standardized active natural substance based on high-molecular-weight compounds of humic origin were studied on the model of global ischemia (40 min) and reperfusion of isolated perfused rat heart. Preventive administration of the test substance (0.1 mg/ml) before ischemia/reperfusion modeling reduced reperfusion contracture and necrotic death of cardiomyocytes and promoted recovery of myocardial contractility. Blockade of NO synthase with L-NAME (100 μM) abolished the above effects of the test substance. It was hypothesized that NO synthase plays an important role in the development of the cardioprotective and inotropic effects of the test natural substance.

Key Words

active substance heart ischemia reperfusion NO synthase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buzlama AV, Chernov UN. Humic substances: Pharmacological properties, mechanisms of action, and prospects for use in medicine. Eksp. Klin. Farmakol. 2010;73(9):43-48. Russian.Google Scholar
  2. 2.
    Zaripova RI, Ziyatdinova NI, Zefirov TL. Effect of NO Synthase Blockade on Myocardial Contractility of Hypokinetic Rats during Stimulation of β-Adrenoreceptors. Bull. Exp. Biol. Med. 2016;161(2):215-217.CrossRefGoogle Scholar
  3. 3.
    Zykova MV, Belousov MV, Lasukova TV, Gorbunov AS, Logvinova LA, Dygai AM. Cardiovascular Effects of High-Molecular-Weight Compounds of Humic Nature. Bull. Exp.Biol. Med. 2017.163(2):206-209.CrossRefGoogle Scholar
  4. 4.
    Litvitskii PF. Pathogenic and adaptive changes in the heart under conditions of regional ischemia followed by of coronary blood flow resumption. Patol. Fiziol. Eksp. Ter. 2002;(2):2-12. Russian.Google Scholar
  5. 5.
    Trofimova ES, Zykova MV, Ligacheva AA, Sherstoboev EY, Zhdanov VV, Belousov MV, Yusubov MS, Krivoshchekov SV, Danilets MG, Dygai AM. Effects of Humic Acids Isolated from Peat of Various Origin on in Vitro Production of Nitric Oxide: a Screening Study. Bull. Exp. Biol. Med. 2016;161(5):687-692.CrossRefGoogle Scholar
  6. 6.
    Akbas A, Silan C, Gulpinar MT, Sancak EB, Ozkanli SS, Cakir DU. Renoprotective effect of humic acid on renal ischemia — reperfusion injury: an experimental study in rats. Inflammation. 2015;38(6):2042-2048.CrossRefGoogle Scholar
  7. 7.
    Andelová E, Barteková M, Pancza D, Styk J, Ravingerová TD. The role of NO in ischemia/reperfusion injury in isolated rat heart. Gen. Physiol. Biophys. 2005;24(4):411-426.Google Scholar
  8. 8.
    Bell RM, Maddock HL, Yellon DM. The cardioprotective and mitochondrial depolarising properties of exogenous nitric oxide in mouse heart. Cardiovasc. Res. 2003;57(2):405-415.CrossRefGoogle Scholar
  9. 9.
    Cagin YF, Sahin N, Polat A, Erdogan MA, Atayan Y, Eyol E, Bilgic Y, Seckin Y, Colak C. The acute effect of humic acid on iron accumulation in rats. Biol. Trace Elem. Res. 2016;171(1):145-155.CrossRefGoogle Scholar
  10. 10.
    Hseu YC, Wang SY, Chen HY, Lu FJ, Gau RJ, Chang WC, Liu TZ, Yang HL. Humic acid induces the generation of nutric oxide in human umbilical vein endothelial cells: stimulation of nutric oxide synthase during cell injuri. Free Radic. Biol. Med. 2002;32(7):619-629.CrossRefGoogle Scholar
  11. 11.
    Ozkan A, Sen HM, Sehitoglu I, Alacam H, Guven M, Aras AB, Akman T, Silan C, Cosar M, Karaman HI. Neuroprotective effect of humic Acid on focal cerebral ischemia injury: an experimental study in rats. Inflammation. 2015;38(1):32-39.CrossRefGoogle Scholar
  12. 12.
    Qin Q, Yang XM, Cui L, Critz SD, Cohen MV, Browner NC, Lincoln TM, Downey JM. Exogenous NO triggers preconditioning via a cGMP-and mitoKATP-dependent mechanism. Am. J. Physiol. Heart Circ. Physiol. 2004;287(2):H712-H718.CrossRefGoogle Scholar
  13. 13.
    Turer AT, Hill JA. Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. Am. J. Cardiology. 2010;106(3):360-368.CrossRefGoogle Scholar
  14. 14.
    Ziolo MT, Kohr MJ, Wang H. Nitric oxide signaling and the regulation of myocardial function. J. Mol. Cell. Cardiol. 2008;45(5):625-632.CrossRefGoogle Scholar
  15. 15.
    Zykova MV, Schepetkin IA, Belousov MV, Krivoshchekov SV, Logvinova LA, Bratishko KA, Yusubov MS, Romanenko SV, Quinn MT. Physicochemical characterization and antioxidant activity of humic acids isolated from peat of various origins. Molecules. 2018;23(4). pii: E753. doi:  https://doi.org/10.3390/molecules23040753.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • T. V. Lasukova
    • 1
    • 2
    Email author
  • M. V. Zykova
    • 3
  • M. V. Belousov
    • 3
  • A. S. Gorbunov
    • 2
  • L. A. Logvinova
    • 3
  • A. M. Dygai
    • 4
  1. 1.Tomsk State Pedagogical UniversityTomskRussia
  2. 2.Research Institute of Cardiology, Tomsk National Research Medical CenterRussian Academy of SciencesTomskRussia
  3. 3.Siberian State Medical University, Ministry of Health of the Russian FederationTomskRussia
  4. 4.E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical CenterRussian Academy of SciencesTomskRussia

Personalised recommendations