Advertisement

Dynamics of fMRI and EEG Parameters in a Stroke Patient Assessed during a Neurofeedback Course Focused on Brodmann Area 4 (M1)

  • A. A. Savelov
  • M. B. Shtark
  • M. E. Mel’nikovEmail author
  • L. I. Kozlova
  • D. D. Bezmaternykh
  • E. G. Verevkin
  • E. D. Petrovskii
  • M. A. Pokrovskii
  • G. M. Tsirkin
  • P. D. Rudych
Article
  • 5 Downloads

A course of interactive stimulation of primary motor cortex (Brodmann area 4) in the brain of a stroke patient resulted in recovery of locomotion volume in the paretic extremities and in improvement of general health accompanied with diverse changes in cerebral activity. During the training course, the magnitude of response in the visual fields of Brodmann areas 17 and 18 decreased; in parallel, the motor areas were supplemented with other ones such as area 24 (the ventral surface of anterior cingulate gyrus responsible for self-regulation of human brain activity and implicated into synthesis of tactile and special information) in company with Brodmann areas 40, 41, 43, 44, and 45. EEG data showed that neurofeedback sessions persistently increased the θ rhythm power in Brodmann areas 7, 39, 40, and 47, while the corresponding powers progressively decreased during a real motion. Both real motion and its virtual sibling constructed by interactive stimulation via neurofeedback were characterized with decreasing powers of the EEG β rhythm in Brodmann areas 6 and 8. The neurofeedback course decreased the coherence between the left Brodmann area 6 and some other ones examined in α and θ ranges. In the context of real motions, the coherence assessed in the EEG β range generally increased. Overall, the EEG and fMRI parameters attest to growing similarity between the moieties of functional communications effected in real and imaginary movements during neurofeedback course. The data open the vista for interactive stimulation to rehabilitate stroke patients; they highlight the important role of Brodmann areas in rearrangement of the brain in such patients; finally, the present results revealed the “common nervous pathway” that can be used to restore the capability for imaginary and real movements by a neurofeedback course after stroke.

Key Words

interactive brain stimulation stroke fMRI EEG primary motor cortex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boldyreva GN, Sharova EV, Zhavoronkova LA, Chelyapina MV, Dubrovskaya LP, Smirnov AS, Troshina EM, Pronin IN, Kornienko VN. Comparison of fMRI responses of the brain in healthy individuals during active, passive, and imaginary hand movements. Meditsinskaya Vizualizatsiya. 2015;(5):100-112.Google Scholar
  2. 2.
    Savelov AA, Shtark MB, Mel’nikov ME, Kozlova LI, Bezmaternykh DD, Verevkin EG, Petrovskii ED, Pokrovskii MA, Tsirkin GM, Rudych PD. Prospects of Synchronous fMRIEEG Recording as the Basis for Neurofeedback (Exemplified on Patient with Stroke Sequelae). Bull. Exp. Biol. Med. 2019;166(3): 386-389.Google Scholar
  3. 3.
    Kaiser DA. Cortical Cartography. Biofeedback. 2010;38(1):9-12. doi: https://doi.org/10.5298/1081-5937-38.1.9.CrossRefGoogle Scholar
  4. 4.
    Liew SL, Rana M, Cornelsen S, Fortunato de Barros Filho M, Birbaumer N, Sitaram R, Cohen LG, Soekadar SR. Improving motor corticothalamic communication after stroke using realtime fMRI connectivity-based neurofeedback. Neurorehabil. Neural Repair. 2016;30(7):671-675.CrossRefGoogle Scholar
  5. 5.
    Sitaram R, Veit R, Stevens B, Caria A, Gerloff C, Birbaumer N, Hummel F. Acquired control of ventral premotor cortex activity by feedback training: an exploratory real-time fMRI and TMS study. Neurorehabil. Neural Repair. 2012;26(3):256-265.CrossRefGoogle Scholar
  6. 6.
    Zotev V, Phillips R, Yuan H, Misaki M, Bodurka J. Self-regulation of human brain activity using simultaneous real time fMRI and EEG neurofeedback. Neuroimage. 2014;85(Pt 3):985-99.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. A. Savelov
    • 1
  • M. B. Shtark
    • 2
    • 3
    • 4
  • M. E. Mel’nikov
    • 2
    • 3
    Email author
  • L. I. Kozlova
    • 2
    • 3
  • D. D. Bezmaternykh
    • 2
    • 3
  • E. G. Verevkin
    • 2
  • E. D. Petrovskii
    • 1
  • M. A. Pokrovskii
    • 1
  • G. M. Tsirkin
    • 2
  • P. D. Rudych
    • 5
  1. 1.International Tomography CenterSiberian Division of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Research Institute of Molecular Biology and BiophysicsFederal Research Center of Fundamental and Translational MedicineNovosibirskRussia
  3. 3.Novosibirsk National Research State UniversityNovosibirskRussia
  4. 4.Research-and-Development Enterprise KomsibNovosibirskRussia
  5. 5.Research Institute of Computational TechnologiesSiberian Division of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations