Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 166, Issue 3, pp 313–316 | Cite as

Pulmonary Microcirculation in Experimental Model of Pulmonary Thromboembolism under Conditions of α-Adrenoceptor Blockade

  • V. I. Evlakhov
  • I. Z. Poyassov
  • V. I. Ovsyannikov
Article
  • 2 Downloads

Changes in the pulmonary microcirculation in isolated perfused rabbit lungs during modeling of pulmonary thromboembolism were studied in control animals and against the background of α-adrenoceptors blockade with phentolamine. Intravenous injection of emboli to control animals was followed by an increase in pressure in the pulmonary artery, mean capillary hydrostatic pressure, capillary filtration coefficient, pulmonary vascular resistance, as well as precapillary and postcapillary resistances. Against the background of α-adrenoceptor blockade, the increase in most parameters was less pronounced than in control animals, while capillary filtration coefficient increased more drastically. Thus, adrenergic mechanisms are involved in the constrictor reactions of both arterial and venous pulmonary vessels under conditions of pulmonary thromboembolism.

Key Words

pulmonary thromboembolism isolated lungs capillary filtration coefficient pulmonary veins α-adrenoceptors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Evlakhov VI, Poyassov IZ, Shaidakov EV. The pulmonary hemodynamics following experimental pulmonary thromboembolism and after blockade of the alpha-adrenoceptors. Ross. Fiziol. Zh. 2016;102(7):815-824. Russian.Google Scholar
  2. 2.
    Evlakhov VI, Poyassov IZ, Shaidakov EV. The role of the venous vessels reactions in the pulmonary hemodynamics changes following experimental pulmonary thromboembolism. Ross. Fiziol. Zh. 2017;103(7):778-788. Russian.Google Scholar
  3. 3.
    Chen HM, Duan YY, Li J, Zhou N, Yuan LJ, Cao T.S, Hou W, Zhang HX, Cao W, Yang YH. A rabbit model with acute thrombo-embolic pulmonary hypertension created with echocardiography guidance. Ultrasound Med. Biol. 2008;34(2):221-227.CrossRefGoogle Scholar
  4. 4.
    Goldhaber SZ, Elliott CG. Acute pulmonary embolism: part I: epidemiology, pathophysiology, and diagnosis. Circulation. 2003;108(22):2726-2729.CrossRefGoogle Scholar
  5. 5.
    Görnemann T, von Wenckstern H, Kleuser B, Villalón CM, Centurión D, Jähnichen S, Pertz HH. Characterization of the postjunctional alpha 2C-adrenoceptor mediating vasoconstriction to UK14304 in porcine pulmonary veins. Br. J. Pharmacol. 2007;151(2):186-194.Google Scholar
  6. 6.
    Görnemann T, Villalón CM, Centurión D, Pertz HH. Phenylephrine contracts porcine pulmonary veins via alpha(1B)-, alpha(1D)-, and alpha(2)-adrenoceptors. Eur. J. Pharmacol. 2009;613(1-3):86-92.CrossRefGoogle Scholar
  7. 7.
    Jujo T, Sakao S, Ishibashi-Ueda H, Ishida K, Naito A, Sugiura T, Shigeta A, Tanabe N, Masuda M, Tatsumi K. Evaluation of the microcirculation in chronic thromboembolic pulmonary hypertension patients: the impact of pulmonary arterial remodeling on postoperative and follow-up pulmonary arterial pressure and vascular resistance. PLoS One. 2015;10(8):e0133167. doi:  https://doi.org/10.1371/journal.pone.0133167.CrossRefGoogle Scholar
  8. 8.
    Ketabchi F, Karimi Z, S Moosavi SM. Sustained hypoxic pulmonary vasoconstriction in the isolated perfused rat lung: effect of α1-adrenergic receptor agonist. Iran J. Med. Sci. 2014;39(3):275-281.Google Scholar
  9. 9.
    Rassler B. Role of α- and β-adrenergic mechanisms in the pathogenesis of pulmonary injuries characterized by edema, inflammation and fibrosis. Cardiovasc. Hematol. Disord. Drug Targets. 2013;13(3):197-207.CrossRefGoogle Scholar
  10. 10.
    Rieg AD, Rossaint R, Uhlig S, Martin C. Cardiovascular agents affect the tone of pulmonary arteries and veins in precision-cut lung slices. PLoS One. 2011;6(12):296-298.CrossRefGoogle Scholar
  11. 11.
    Salvi SS. Alpha1-adrenergic hypothesis for pulmonary hypertension. Chest. 1999;115(6):1708-1719.CrossRefGoogle Scholar
  12. 12.
    Vaillancourt M, Chia P, Sarji S, Nguyen J, Hoftman N, Ruffenach G, Eghbali M, Mahajan A, Umar S. Autonomic nervous system involvement in pulmonary arterial hypertension. Respir. Res. 2017;18(1):201 doi:  https://doi.org/10.1186/s12931-017-0679-6. CrossRefGoogle Scholar
  13. 13.
    Yang J, Sun H, Zhang J, Hu M, Wang J, Wu G, Wang G. Regulation of β-adrenergic receptor trafficking and lung microvascular endothelial cell permeability by Rab5 GTPase. Int. J. Biol. Sci. 2015;11(8):868-878.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. I. Evlakhov
    • 1
  • I. Z. Poyassov
    • 1
  • V. I. Ovsyannikov
    • 1
  1. 1.Department of Physiology of the Visceral SystemInstitute of Experimental MedicineSt. PetersburgRussia

Personalised recommendations