Circular RNA: New Regulatory Molecules
- 21 Downloads
Circular RNA are a family of covalently closed circular RNA molecules, formed from pre-mRNA of coding genes by means of splicing (canonical and alternative noncanonical splicing). Maturation of circular RNA is regulated by cis- and trans-elements. Complete list of biological functions of these RNA is not yet compiled; however, their capacity to interact with specific microRNA and play a role of a depot attracts the greatest interest. This property makes circular RNA active regulatory transcription factors. Circular RNA have many advantages over their linear analogs: synthesis of these molecules is conservative, they are universal, characterized by clearly determined specificity, and are resistant to exonucleases. In addition, the level of their expression is often higher than that of their linear forms. It should be noted that expression of circular RNA is tissue-specific. Moreover, some correlations between changes in the repertoire and intensity of expression of circular RNA and the development of some pathologies have been detected. Circular RNA have certain advantages and can serve as new biomarkers for the diagnosis, prognosis, and evaluation of response to therapy.
Key Words
circular RNA noncanonical alternative splicing deposition of minor interfering RNA depot gene expression diagnosisPreview
Unable to display preview. Download preview PDF.
References
- 1.Abdelmohsen K, Gorospe M. Posttranscriptional regulation of cancer traits by HuR. Wiley Interdiscip. Rev. RNA. 2010;1(2):214-229.PubMedCrossRefGoogle Scholar
- 2.Abdelmohsen K, Panda AC, De S, Grammatikakis I, Kim J, Ding J, Noh JH, Kim KM, Mattison JA, de Cabo R, Gorospe M. Circular RNAs in monkey muscle: age-dependent changes. Aging (Albany NY). 2015;7(11):903-910.PubMedPubMedCentralCrossRefGoogle Scholar
- 3.Abelson J, Trotta CR, Li H. tRNA splicing. J. Biol. Chem. 1998;273(21):12 685-12 688.CrossRefGoogle Scholar
- 4.AbouHaidar MG, Venkataraman S, Golshani A, Liu B, Ahmad T. Novel coding, translation, and gene expression of a replicating covalently closed circular RNA of 220 nt. Proc. Natl Acad. Sci. USA. 2014;111(40):14,542-14,547.CrossRefGoogle Scholar
- 5.Anderson DM, Anderson KM, Chang CL, Makarewich CA, Nelson BR, McAnally JR, Kasaragod P, Shelton JM, Liou J, Bassel-Duby R, Olson EN. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell. 2015;160(4):595-606.PubMedPubMedCentralCrossRefGoogle Scholar
- 6.Andreeva K, Cooper N. Circular RNAs: new players in gene regulation. Adv. Biosci. Biotechnol. 2015;6(6):433-441. doi: https://doi.org/10.4236/abb.2015.66043.Google Scholar
- 7.Andrés-León E, Núñez-Torres R, Rojas AM. miARma-Seq: a comprehensive tool for miRNA, mRNA and circRNA analysis. Sci. Rep. 2016;6. ID 25749. doi: 10.1038/srep25749.Google Scholar
- 8.Armakola M, Higgins MJ, Figley MD, Barmada SJ, Scarborough EA, Diaz Z, Fang X, Shorter J, Krogan NJ, Finkbeiner S, Farese RV Jr, Gitler AD. Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models. Nat. Genet. 2012;44(12):1302-1309.PubMedPubMedCentralCrossRefGoogle Scholar
- 9.Ashwal-Fluss R, Meyer M, Pamudurti N.R, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell. 2014;56(1):55-66.PubMedCrossRefGoogle Scholar
- 10.Bachmayr-Heyda A, Reiner AT, Auer K, Sukhbaatar N, Aust S, Bachleitner-Hofmann T, Mesteri I, Grunt TW, Zeillinger R, Pils D. Correlation of circular RNA abundance with proliferation-exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis and normal human tissues. Sci. Rep. 2015;5:8057. doi: https://doi.org/10.1038/srep08057.PubMedPubMedCentralGoogle Scholar
- 11.Bahn JH, Zhang Q, Li F, Chan TM, Lin X, Kim Y, Wong DT, Xiao X. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin. Chem. 2015;61(1):221-230.PubMedCrossRefGoogle Scholar
- 12.Barrett SP, Wang PL, Salzman J. Circular RNA biogenesis can proceed through an exon-containing lariat precursor. Elife. 2015;4:e07540. doi: https://doi.org/10.7554/eLife.07540.PubMedPubMedCentralGoogle Scholar
- 13.Beckedorff FC, Ayupe AC, Crocci-Souza R, Amaral MS, Nakaya HI, Soltys DT, Menck CF, Reis EM, Verjovski-Almeida S. The intronic long noncoding RNA ANRASSF1 recruits PRC2 to the RASSF1A promoter, reducing the expression of RASSF1A and increasing cell proliferation. PLoS Genet. 2013;9(8):e1003705. doi: https://doi.org/10.1371/journal.pgen.1003705.PubMedPubMedCentralGoogle Scholar
- 14.Bentley DL. Coupling mRNA processing with transcription in time and space. Nat. Rev. Genet. 2014;15(3):163-175.PubMedPubMedCentralCrossRefGoogle Scholar
- 15.Braunschweig U, Barbosa-Morais NL, Pan Q, Nachman EN, Alipanahi B, Gonatopoulos-Pournatzis T, Frey B, Irimia M, Blencowe BJ. Widespread intron retention in mammals functionally tunes transcriptomes. Genome Res. 2014;24(11):1774-1786.PubMedPubMedCentralCrossRefGoogle Scholar
- 16.Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet. 2010;6(12):e1001233. doi: https://doi.org/10.1371/journal.pgen.1001233.PubMedPubMedCentralGoogle Scholar
- 17.Cech TR. Self-splicing of group I introns. Annu. Rev. Biochem. 1990;59:543-568.PubMedCrossRefGoogle Scholar
- 18.Chen LL. The biogenesis and emerging roles of circular RNAs. Nat. Rev. Mol. Cell Biol. 2016;17(4):205-211.PubMedCrossRefGoogle Scholar
- 19.Chen T, Xiang JF, Zhu S, Chen S, Yin QF, Zhang XO, Zhang J, Feng H, Dong R, Li XJ, Yang L, Chen LL. ADAR1 is required for differentiation and neural induction by regulating microRNA processing in a catalytically independent manner. Cell Res. 2015;25(4):459-476.PubMedPubMedCentralCrossRefGoogle Scholar
- 20.Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA, Goodall GJ. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160(6):1125-1134.PubMedCrossRefGoogle Scholar
- 21.Côté F, Perreault JP. Peach latent mosaic viroid is locked by a 2’,5’-phosphodiester bond produced by in vitro self-ligation. J. Mol. Biol. 1997;273(3):533-543.PubMedCrossRefGoogle Scholar
- 22.Danan M, Schwartz S, Edelheit S, Sorek R. Transcriptome-wide discovery of circular RNAs in Archaea. Nucleic Acids Res. 2012;40(7):3131-3142.PubMedCrossRefGoogle Scholar
- 23.Dropcho EJ, Chen YT, Posner JB, Old LJ. Cloning of a brain protein identified by autoantibodies from a patient with paraneoplastic cerebellar degeneration. Proc. Natl Acad. Sci. USA. 1987;84(13):4552-4556.PubMedPubMedCentralCrossRefGoogle Scholar
- 24.Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, Gorospe M. CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol. 2016;13(1):34-42.PubMedCrossRefGoogle Scholar
- 25.Fan X, Zhang X, Wu X, Guo H, Hu Y, Tang F, Huang Y. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol. 2015;16:148.PubMedPubMedCentralCrossRefGoogle Scholar
- 26.Flores R, Grubb D, Elleuch A, Nohales MÁ, Delgado S, Gago S. Rolling-circle replication of viroids, viroid-like satellite RNAs and hepatitis delta virus: variations on a theme. RNA Biol. 2011;8(2):200-206.PubMedCrossRefGoogle Scholar
- 27.Geng HH, Li R, Su YM, Xiao J, Pan M, Cai XX, Ji XP. The Circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS One. 2016;11(3):e0151753. doi: https://doi.org/10.1371/journal.pone.0151753.PubMedPubMedCentralGoogle Scholar
- 28.Glažar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs. RNA. 2014;20(11):1666-1670.PubMedPubMedCentralCrossRefGoogle Scholar
- 29.Grabowski PJ, Zaug AJ, Cech TR. The intervening sequence of the ribosomal RNA precursor is converted to a circular RNA in isolated nuclei of Tetrahymena. Cell. 1981;23(2):467-476.PubMedCrossRefGoogle Scholar
- 30.Guo JU, Agarwal V, Guo H, Bartel DP. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 2014;15(7):409. doi: https://doi.org/10.1186/s13059-014-0409-z.PubMedPubMedCentralGoogle Scholar
- 31.Han L, Zhang G, Zhang N, Li H, Liu Y, Fu A, Zheng Y. Prognostic potential of microRNA-138 and its target mRNA PDK1 in sera for patients with non-small cell lung cancer. Med. Oncol. 2014;31(9):129. doi: https://doi.org/10.1007/s12032-014-0129-y.PubMedGoogle Scholar
- 32.Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384-388.PubMedCrossRefGoogle Scholar
- 33.Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer. Cancer Res. 2013;73(18):5609-5612.PubMedCrossRefGoogle Scholar
- 34.Hansen TB, Venø MT, Damgaard CK, Kjems J. Comparison of circular RNA prediction tools. Nucleic Acids Res. 2015;44(6):e58. doi: https://doi.org/10.1093/nar/gkv1458.PubMedPubMedCentralGoogle Scholar
- 35.Hsu M.T, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature. 1979;280:339-340.PubMedCrossRefGoogle Scholar
- 36.Huang R, Jaritz M, Guenzl P, Vlatkovic I, Sommer A, Tamir IM, Marks H, Klampfl T, Kralovics R, Stunnenberg HG, Barlow DP, Pauler FM. An RNA-Seq strategy to detect the complete coding and non-coding transcriptome including full-length imprinted macro ncRNAs. PLoS One. 2011;6(11):e27288. doi: https://doi.org/10.1371/journal.pone.0027288.PubMedPubMedCentralGoogle Scholar
- 37.Ivanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR, Piechotta M, Levanon EY, Landthaler M, Dieterich C, Rajewsky N. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep. 2015;10(2):170-177.PubMedCrossRefGoogle Scholar
- 38.Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat. Biotechnol. 2014;32(5):453-461.PubMedPubMedCentralCrossRefGoogle Scholar
- 39.Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19(2):141-157.PubMedPubMedCentralCrossRefGoogle Scholar
- 40.Kahvejian A, Roy G, Sonenberg N. The mRNA closed-loop model: the function of PABP and PABP-interacting proteins in mRNA translation. Cold Spring Harb. Symp. Quant. Biol. 2001;66:293-300.PubMedCrossRefGoogle Scholar
- 41.Kelly S, Greenman C, Cook PR, Papantonis A. Exon skipping is correlated with exon cyclization. J. Mol. Biol. 2015;427(15):2414-2417.PubMedCrossRefGoogle Scholar
- 42.Kramer MC, Liang D, Tatomer DC, Gold B, March ZM, Cherry S, Wilusz JE. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev. 2015;29(20):2168-2182.PubMedPubMedCentralCrossRefGoogle Scholar
- 43.Lasda E, Parker R. Circular RNAs: diversity of form and function. RNA. 2014;20(12):1829-1842.PubMedPubMedCentralCrossRefGoogle Scholar
- 44.Li F, Zhang L, Li W, Deng J, Zheng J, An M, Lu J, Zhou Y. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget. 2015;6(8):6001-6013.PubMedPubMedCentralGoogle Scholar
- 45.Li P, Chen S, Chen H, Mo X, Li T, Shao Y, Xiao B, Guo J. Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin. Chim. Acta. 2015;444:132-136.PubMedCrossRefGoogle Scholar
- 46.Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X, Huang S. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015;25(8):981-984.PubMedPubMedCentralCrossRefGoogle Scholar
- 47.Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, Zhu P, Chang Z, Wu Q, Zhao Y, Jia Y, Xu P, Liu H, Shan G. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 2015;22(3):256-264.PubMedCrossRefGoogle Scholar
- 48.Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 2014;28(20):2233-2247.PubMedPubMedCentralCrossRefGoogle Scholar
- 49.Lin X, Lo HC, Wong DT, Xiao X. Noncoding RNAs in human saliva as potential disease biomarkers. Front. Genet. 2015;6:175. doi: https://doi.org/10.3389/fgene.2015.00175.PubMedPubMedCentralGoogle Scholar
- 50.Li-Pook-Than J, Bonen L. Multiple physical forms of excised group II intron RNAs in wheat mitochondria. Nucleic Acids Res. 2006;34(9):2782-2790.PubMedPubMedCentralCrossRefGoogle Scholar
- 51.Lu T, Cui L, Zhou Y, Zhu C, Fan D, Gong H, Zhao Q, Zhou C, Zhao Y, Lu D, Luo J, Wang Y, Tian Q, Feng Q, Huang T, Han B. Transcriptome-wide investigation of circular RNAs in rice. RNA. 2015;21(12):2076-2087.PubMedPubMedCentralCrossRefGoogle Scholar
- 52.Lu Z, Filonov GS, Noto JJ, Schmidt CA, Hatkevich TL, Wen Y, Jaffrey SR, Matera AG. Metazoan tRNA introns generate stable circular RNAs in vivo. RNA. 2015;21(9):1554-1565.PubMedPubMedCentralCrossRefGoogle Scholar
- 53.Lukiw WJ. Circular RNA (circRNA) in Alzheimer’s disease (AD). Front. Genet. 2013;4:307. doi: https://doi.org/10.3389/fgene.2013.00307.PubMedPubMedCentralGoogle Scholar
- 54.Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333-338.PubMedCrossRefGoogle Scholar
- 55.Memczak S, Papavasileiou P, Peters O, Rajewsky N. Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS One. 2015;10(10):e0141214. doi: https://doi.org/10.1371/journal.pone.0141214.PubMedPubMedCentralGoogle Scholar
- 56.Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat. Struct. Mol. Biol. 2013;20(3):300-307.PubMedCrossRefGoogle Scholar
- 57.Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB, Jaffrey SR. 5’ UTR m(6)A promotes cap-independent translation. Cell. 2015;163(4):999-1010.PubMedPubMedCentralCrossRefGoogle Scholar
- 58.Nigro JM, Cho KR, Fearon ER, Kern SE, Ruppert JM, Oliner JD, Kinzler KW, Vogelstein B. Scrambled exons. Cell. 1991;64(3):607-613.PubMedCrossRefGoogle Scholar
- 59.Pacheco A, Martinez-Salas E. Insights into the biology of IRES elements through riboproteomic approaches. J. Biomed. Biotechnol. 2010;2010. ID 458927. doi: 10.1155/2010/458927.Google Scholar
- 60.Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, Herzog M, Schreyer L, Papavasileiou P, Ivanov A, Öhman M, Refojo D, Kadener S, Rajewsky N. Circular RNAs in the mammalian brain are Highly abundant, conserved, and dynamically expressed. Mol. Cell. 2015;58(5):870-885.PubMedCrossRefGoogle Scholar
- 61.Salgia SR, Singh SK, Gurha P, Gupta R. Two reactions of Haloferax volcanii RNA splicing enzymes: joining of exons and cyclization of introns. RNA. 2003;9(3):319-330.PubMedPubMedCentralCrossRefGoogle Scholar
- 62.Salzman J. Circular RNA expression: its potential regulation and function. Trends Genet. 2016;32(5):309-316.PubMedPubMedCentralCrossRefGoogle Scholar
- 63.Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Celltype specific features of circular RNA expression. PLoS Genet. 2013;9(9):e1003777. doi: https://doi.org/10.1371/journal.pgen.1003777.PubMedPubMedCentralGoogle Scholar
- 64.Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl Acad. Sci. USA. 1976;73(11):3852-3856.PubMedPubMedCentralCrossRefGoogle Scholar
- 65.Schmitz KM, Mayer C, Postepska A, Grummt I. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev. 2010;24(20):2264-2269.PubMedPubMedCentralCrossRefGoogle Scholar
- 66.Starke S, Jost I, Rossbach O, Schneider T, Schreiner S, Hung LH, Bindereif A. Exon cyclization requires canonical splice signals. Cell Rep. 2015;10(1):103-111.PubMedCrossRefGoogle Scholar
- 67.Suzuki H, Tsukahara T. A view of pre-mRNA splicing from RNase R resistant RNAs. Int. J. Mol. Sci. 2014;15(6):9331-9342.PubMedPubMedCentralCrossRefGoogle Scholar
- 68.Szabo L, Morey R, Palpant NJ, Wang PL, Afari N, Jiang C, Parast MM, Murry CE, Laurent LC, Salzman J. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol. 2015;16:126. doi: https://doi.org/10.1186/s13059-015-0690-5.PubMedPubMedCentralGoogle Scholar
- 69.Thomas LF, Sætrom P. Circular RNAs are depleted of polymorphisms at microRNA binding sites. Bioinformatics. 2014; 30(16):2243-2246.PubMedPubMedCentralCrossRefGoogle Scholar
- 70.Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M. Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Int. J. Genomics. 2014;2014. ID 970607. doi: 10.1155/2014/970607.Google Scholar
- 71.Villegas VE, Zaphiropoulos PG. Neighboring gene regulation by antisense long non-coding RNAs. Int. J. Mol. Sci. 2015;16(2):3251-3266.PubMedPubMedCentralCrossRefGoogle Scholar
- 72.Vivancos AP, Güell M, Dohm JC, Serrano L, Himmelbauer H. Strand-specific deep sequencing of the transcriptome. Genome Res. 2010;20(7):989-999.PubMedPubMedCentralCrossRefGoogle Scholar
- 73.Wang PL, Bao Y, Yee MC, Barrett SP, Hogan GJ, Olsen MN, Dinneny JR, Brown PO, Salzman J. Circular RNA is expressed across the eukaryotic tree of life. PLoS One. 2014;9(6):e90859. doi: https://doi.org/10.1371/journal.pone.0090859.PubMedPubMedCentralGoogle Scholar
- 74.Wang Y, Wang Z. Efficient backsplicing produces translatable circular mRNAs. RNA. 2015;21(2):172-179.PubMedPubMedCentralCrossRefGoogle Scholar
- 75.Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, Celniker SE, Graveley BR, Lai EC. Genome-wide analysis of Drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 2014;9(5):1966-1980.PubMedPubMedCentralCrossRefGoogle Scholar
- 76.White EJ, Brewer G, Wilson GM. Post-transcriptional control of gene expression by AUF1: mechanisms, physiological targets, and regulation. Biochim. Biophys. Acta. 2013;1829(6-7):680-688.PubMedCrossRefGoogle Scholar
- 77.Williams GT, Mourtada-Maarabouni M, Farzaneh F. A critical role for non-coding RNA GAS5 in growth arrest and rapamycin inhibition in human T-lymphocytes. Biochem. Soc. Trans. 2011;39(2):482-486.PubMedCrossRefGoogle Scholar
- 78.Xu H, Guo S, Li W, Yu P. The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci. Rep. 2015;5:12453. doi: https://doi.org/10.1038/srep12453.PubMedPubMedCentralGoogle Scholar
- 79.You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, Akbalik G, Wang M, Glock C, Quedenau C, Wang X, Hou J, Liu H, Sun W, Sambandan S, Chen T, Schuman EM, Chen W. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat. Neurosci. 2015;18(4):603-610.PubMedPubMedCentralCrossRefGoogle Scholar
- 80.Zhang C, Wu H, Wang Y, Zhu S, Liu J, Fang X, Chen H. Circular RNA of cattle casein genes are highly expressed in bovine mammary gland. J. Dairy Sci. 2016;99(6):4750-4760.PubMedCrossRefGoogle Scholar
- 81.Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L. Complementary sequence-mediated exon cyclization. Cell. 2014;159(1):134-147.PubMedCrossRefGoogle Scholar
- 82.Zhang Y, Xue W, Li X, Zhang J, Chen S, Zhang JL, Yang L, Chen LL. The Biogenesis of Nascent Circular RNAs. Cell Rep. 2016;15(3):611-624.PubMedCrossRefGoogle Scholar
- 83.Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L, Chen LL. Circular intronic long noncoding RNAs. Mol. Cell. 2013;51(6):792-806.PubMedCrossRefGoogle Scholar
- 84.Zhao ZJ, Shen J. Circular RNA participates in the carcinogenesis and the malignant behavior of cancer. RNA Biol. 2017; 14(5):514-521.PubMedCrossRefGoogle Scholar
- 85.Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, Luo Y, Lyu D, Li Y, Shi G, Liang L, Gu J, He X, Huang S. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat. Commun. 2016;7:11215. doi: https://doi.org/10.1038/ncomms11215.PubMedPubMedCentralGoogle Scholar