Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 164, Issue 1, pp 6–9 | Cite as

Green Tea Extract Increases the Expression of Genes Responsible for Regulation of Calcium Balance in Rat Slow-Twitch Muscles under Conditions of Exhausting Exercise

  • E. A. Korf
  • I. V. Kubasov
  • M. S. Vonsky
  • A. V. Novozhilov
  • A. L. Runov
  • E. V. Kurchakova
  • E. V. Matrosova
  • T. V. Tavrovskaya
  • N. V. Goncharov
Article
  • 40 Downloads

We studied the role of calcium-regulating structures of slow- (m. soleus, SOL) and fast-twitch (m. extensor digitorum longus, EDL) skeletal muscles of rats during adaptation to exhausting physical activity and the possibility of modulating this adaptation with decaffeinated green tea extract. It was established that EDL adaptation is mainly aimed at Са2+ elimination from the sarcoplasm by Са-ATPase and its retention in the reticulum by calsequestrin. Administration of green tea extract increased endurance due to involvement of slow-twitch muscles whose adaptation is associated with enhanced expression of all the studied genes responsible for the regulation of Ca2+ balance.

Key Words

m. soleus m. extensor digitorum longus calcium exhausting exercise 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Minigalin AD, Voitenko NG, Vorobyov AA, Korf EA, Novozhilov AV, Petukhova OV, Baranova TI, Goncharov NV. Investigation of relations between physiological and biochemical parameters of human beings in dynamics after performing a maximal workload. Lech. Fizkult. Sport. Med. 2015;(6):14-18. Russian.Google Scholar
  2. 2.
    Novozhilov AV, Tavrovskaya TV, Voitenko NG, Maslova MN, Goncharov NV, Morozov VI. Efficacy of green tea extract in two exercise models. Bull. Exp. Biol. Med. 2015;158(3):342-345.CrossRefPubMedGoogle Scholar
  3. 3.
    Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol. Rev. 2008;88(1):287-332.CrossRefPubMedGoogle Scholar
  4. 4.
    Debold EP. Potential molecular mechanisms underlying muscle fatigue mediated by reactive oxygen and nitrogen species. Front. Physiol. 2015;6:239. doi:  https://doi.org/10.3389/fphys.2015.00239.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dorchies OM, Wagner S, Buetler TM, Ruegg UT. Protection of dystrophic muscle cells with polyphenols from green tea correlates with improved glutathione balance and increased expression of 67LR, a receptor for (-)-epigallocatechin gallate. Biofactors. 2009;35(3):279-294.CrossRefPubMedGoogle Scholar
  6. 6.
    Duchateau J, Hainaut K. Behaviour of short and long latency reflexes in fatigued human muscles. J. Physiol. 1993;471:787-799.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Goncharov N, Maevsky E, Voitenko N, Novozhilov A, Kubasov I, Jenkins R, Avdonin P. Nutraceuticals in sports activities and fatigue. Nutraceuticals: Efficacy, Safety and Toxicity. Gupta RC, ed. Amsterdam, 2016. P. 177-188.Google Scholar
  8. 8.
    Hodgson AB, Randell RK, Jeukendrup AE. The effect of green tea extract on fat oxidation at rest and during exercise: evidence of efficacy and proposed mechanisms. Adv Nutr. 2013;4(2):129-140.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Huang CC, Wang T, Tung YT, Lin WT. Effect of exercise training on skeletal muscle SIRT1 and PGC-1α expression levels in rats of different age. Int. J. Med. Sci. 2016;13(4):260-270.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Jenkinson C, Petroczi A, Naughton DP. Effects of dietary components on testosterone metabolism via UDP-glucuronosyltransferase. Front. Endocrinol. (Lausanne). 2013;4:80. doi:  https://doi.org/10.3389/fendo.2013.00080.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Kinnunen S, Mänttäri S. Specific effects of endurance and sprint training on protein expression of calsequestrin and SERCA in mouse skeletal muscle. J. Muscle Res. Cell Motil. 2012;33(2):123-130.CrossRefPubMedGoogle Scholar
  12. 12.
    Lin SP, Li CY, Suzuki K, Chang CK, Chou KM, Fang SH. Green tea consumption after intensive taekwondo training enhances salivary defense factors and antibacterial capacity. PLoS One. 2014;9(1):e87580. doi:  https://doi.org/10.1371/journal.pone.0087580.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30(9):e36.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Place N, Ivarsson N, Venckunas T, Neyroud D, Brazaitis M, Cheng AJ, Ochala J, Kamandulis S, Girard S, Volungevičius G, Paužas H, Mekideche A, Kayser B, Martinez-Redondo V, Ruas JL, Bruton J, Truffert A, Lanner JT, Skurvydas A, Westerblad H. Ryanodine receptor fragmentation and sarcoplasmic reticulum Ca2+ leak after one session of high-intensity interval exercise. Proc. Natl Acad. Sci. USA. 2015;112(50):15,492-15,497.CrossRefGoogle Scholar
  15. 15.
    Sachdeva AK, Kuhad A, Tiwari V, Arora V, Chopra K. Protective effect of epigallocatechin gallate in murine water-immersion stress model of chronic fatigue syndrome. Basic Clin. Pharmacol. Toxicol. 2010;106(6):490-496.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • E. A. Korf
    • 1
  • I. V. Kubasov
    • 1
  • M. S. Vonsky
    • 2
  • A. V. Novozhilov
    • 1
  • A. L. Runov
    • 2
  • E. V. Kurchakova
    • 2
  • E. V. Matrosova
    • 1
  • T. V. Tavrovskaya
    • 1
  • N. V. Goncharov
    • 1
  1. 1.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute of Cytology of Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations