Bulletin of Experimental Biology and Medicine

, Volume 162, Issue 1, pp 7–10 | Cite as

Cardiac Body Surface Potentials in Rats with Experimental Pulmonary Hypertension during Ventricular Depolarization

  • O. V. Suslonova
  • S. L. Smirnova
  • I. M. Roshchevskaya

The spatial and the amplitude-temporal parameters of cardiac body surface potentials were examined in female Wistar rats with experimental pulmonary hypertension during ventricular depolarization. The cardiac body surface potentials have been led from 64 subcutaneous electrodes evenly distributed across the chest surface prior to and 4 weeks after subcutaneous injection of a single dose of monocrotaline (60 mg/kg). Right ventricular hypertrophy and electrophysiological remodeling of the heart developed in rats with experimental pulmonary hypertension in 4 weeks after monocrotaline injection; these changes led to a significant increase in amplitude and temporal characteristics of the cardioelectric field on the body surface in comparison with the initial state.

Key Words

pulmonary hypertension ECG body surface potential mapping monocrotaline rat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krandycheva VV, Kharin SN, Shmakov DN, Roshchevskaya IM. Cardiac electric field on the body surface in rats with left ventricular hypertrophy caused by experimental renovascular hypertension. Ross. Fiziol. Zh. 2005;91(10):1168-1175. Russian.Google Scholar
  2. 2.
    Moroshkin VS, Gusarov VG. Possibilities of surface ECG mapping in assessing changes in the atrial depolarization processes in patients with essential hypertension and hypertrophic cardiomyopathy. Kardiologiya. 1997;37(5):71-72. Russian.Google Scholar
  3. 3.
    Roshchevskaya IM. Cardioelectrical Field of Warm-Blooded Animals and Humans. St. Petersburg, 2008. Russian.Google Scholar
  4. 4.
    Roshchevsky MP, Arteeva NV, Kolomeets NL, Antonova NA, Kambalov MYu, Shmakov DN, Roshchevskaya IM. The system “CARDIOINFORM” for visualization and analysis of the heart electric field. Med. Akad. Zh. 2005;5(3):74-79. Russian.Google Scholar
  5. 5.
    Shorokhov YuV, Roshchevskaya IM. Electric field of the heart during ventricular depolarization in ISIAH rats with varying degree of arterial hypertension. Izv. Komi Nauch. Tsentra Ural. Otdel. Ross. Akad. Nauk. 2014(2):46-49. Russian.Google Scholar
  6. 6.
    Ahearn GS, Tapson VF, Rebeiz A, Greenfield JC Jr. Electrocardiography to define clinical status in primary pulmonary hypertension and pulmonary arterial hypertension secondary to collagen vascular disease. Chest. 2002;122(2):524-527.CrossRefPubMedGoogle Scholar
  7. 7.
    Benoist D, Stones R, Drinkhill MJ, Benson AP, Yang Z, Cassan C, Gilbert SH, Saint DA, Cazorla O, Steele DS, Bernus O, White E. Cardiac arrhythmia mechanisms in rats with heart failure induced by pulmonary hypertension. Am. J. Physiol. Heart Circ. Physiol. 2012;302(11):H2381-H2395.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Blyth KG, Kinsella J, Hakacova N, McLure LE, Siddiqui AM, Wagner GS, Peacock AJ. Quantitative estimation of right ventricular hypertrophy using ECG criteria in patients with pulmonary hypertension: A comparison with cardiac MRI. Pulm. Circ. 2011;1(4):470-474.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Green LS, Abildskov JA. Clinical applications of body surface potential mapping. Clin. Cardiol. 1995;18(5):245-249.CrossRefPubMedGoogle Scholar
  10. 10.
    Hardziyenka M, Campian ME, Bouma BJ, Linnenbank AC, de Bruin-Bon HA, Kloek JJ, van der Wal AC, Baan. Jr, de Beaumont EM, Reesink HJ, de Bakker JM, Bresser P, Tan HL. Right-to-left ventricular diastolic delay in chronic thromboembolic pulmonary hypertension is associated with activation delay and action potential prolongation in right ventricle. Circ. Arrhythm. Electrophysiol. 2009;2(5):555-561.Google Scholar
  11. 11.
    Hardziyenka M, Campian ME, Verkerk AO, Surie S, van Ginneken AC, Hakim S, Linnenbank AC, de Bruin-Bon HA, Beekman L, van der Plas MN, Remme CA, van Veen TA, Bresser P, de Bakker JM, Tan HL. Electrophysiologic remodeling of the left ventricle in pressure overload-induced right ventricular failure. J. Am. Coll. Cardiol. 2012;59(24):2193-2202.CrossRefPubMedGoogle Scholar
  12. 12.
    Kolettis T, Vlahos AP, Louka M, Hatzistergos KE, Baltogiannis GG, Agelaki MM, Mitsi A, Malamou-Mitsi V. Characterisation of a rat model of pulmonary arterial hypertension. Hellenic J. Cardiol. 2007;48(4):206-210.PubMedGoogle Scholar
  13. 13.
    Kozlíková K, Martinka J, Bulas J. ST segment body surface isointegral maps in patients with arterial hypertension. Physiol. Res. 2012;61(1):35-42.PubMedGoogle Scholar
  14. 14.
    Morimatsu Y, Sakashita N, Komohara Y, Ohnishi K, Masuda H, Dahan D, Takeya M, Guibert C, Marthan R. Development and characterization of an animal model of severe pulmonary arterial hypertension. J. Vasc. Res. 2012;49(1):33-42.CrossRefPubMedGoogle Scholar
  15. 15.
    Simonneau G, Galiè N, Rubin LJ, Langleben D, Seeger W, Domenighetti G, Gibbs S, Lebrec D, Speich R, Beghetti M, Rich S, Fishman A. Clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol. 2004;43(12, Suppl. S):5S-12S.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • O. V. Suslonova
    • 1
  • S. L. Smirnova
    • 1
  • I. M. Roshchevskaya
    • 1
  1. 1.Department of Comparative Cardiology, Komi Scientific Center, Ural Division of Russian Academy of SciencesSyktyvkarRussia

Personalised recommendations