Bulletin of Experimental Biology and Medicine

, Volume 160, Issue 5, pp 605–609 | Cite as

Oxytocin-Induced Changes in Monoamine Level in Symmetric Brain Structures of Isolated Aggressive C57Bl/6 Mice

  • I. V. Karpova
  • V. V. Mikheev
  • V. V. Marysheva
  • E. R. Bychkov
  • S. N. ProshinEmail author

Changes in activity of monoaminergic systems of the left and right brain hemispheres after administration of saline and oxytocin were studied in male C57Bl/6 mice subjected to social isolation. The concentrations of dopamine, norepinephrine, serotonin, and their metabolites dihydroxyphenylacetic, homovanillic, and 5-hydroxyindoleacetic acids were measured in the cerebral cortex, hippocampus, olfactory tubercle, and striatum of the left and right brain hemispheres by HPLC. In isolated aggressive males treated intranasally with saline, the content of serotonin and 5-hydroxyindoleacetic acid was significantly higher in the right hippocampus. Oxytocin reduces aggression caused by long-term social isolation, but has no absolute ability to suppress this type of behavior. Oxytocin reduced dopamine content in the left cortex and serotonin content in the right hippocampus and left striatum. Furthermore, oxytocin evened the revealed asymmetry in serotonin and 5-hydroxyindoleacetic acid concentrations in the hippocampus. At the same time, asymmetry in dopamine concentration appeared in the cortex with predominance of this transmitter in the right hemisphere. The data are discussed in the context of lateralization of neurotransmitter systems responsible for intraspecific aggression caused by long-term social isolation.

Key Words

male C57Bl/6 mice aggressive behavior oxytocin monoamines hemispheric asymmetry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Val’dman and V. P. Poshivalov, Pharmacological Regulation of Aggressive Behavior [in Russian], Leningrad (1984).Google Scholar
  2. 2.
    I. V. Karpova, V. V. Mikheev, E. R. Bychkov, et al., Obzory Klin. Psikhofarmakol. Lekarstv. Ter., 10, No. 4, 42-48 (2012).CrossRefGoogle Scholar
  3. 3.
    I. V. Karpova, V. V. Mikheev, E. R. Bychkov, et al., Vestn. Smolensk Gos. Med. Akad., 11, No. 3, 3-9 (2012).Google Scholar
  4. 4.
    I. V. Karpova, V. V. Mikheev, V. V. Marysheva, et al., Biomed. Khimiia, 60, No. 2, 258-263 (2014).CrossRefGoogle Scholar
  5. 5.
    V. V. Mikheev and P. D. Shabanov, Pharmacological Asymmetry of the Brain [in Russian], St. Petersburg (2007).Google Scholar
  6. 6.
    V. P. Poshivalov, Experimental Psychopharmacology of Aggressive Behavior [in Russian], Leningrad (1986).Google Scholar
  7. 7.
    A. M. Anacker and A. K. Beery, Front. Behav. Neurocsi., 7, 185 (2013).Google Scholar
  8. 8.
    I. N. Krasnova, E. R. Bychkov, V. I. Lioudyno, et al., Neuroscience, 95, No. 1, 113-117 (2000).CrossRefPubMedGoogle Scholar
  9. 9.
    R. Yanovitch and E. F. Coccaro, Adv. Genet., 75, 151-169 (2011).CrossRefGoogle Scholar
  10. 10.
    K. A. Young, Y. Liu, and Z. Wang, Comp. Biochem. Physiol. Toxicol. Pharmacol., 148, No. 4, 401-410 (2008).CrossRefGoogle Scholar
  11. 11.
    C. F. Zink and A. Meyer-Lindenberg, Horm. Behav., 61, No. 3, 400-409 (2012).CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • I. V. Karpova
    • 1
  • V. V. Mikheev
    • 2
  • V. V. Marysheva
    • 2
  • E. R. Bychkov
    • 2
  • S. N. Proshin
    • 3
    Email author
  1. 1.I. P. Pavlov First St. Petersburg State Medical UniversitySt. PetersburgRussia
  2. 2.S. M. Kirov Military Medical AcademySt. PetersburgRussia
  3. 3.St. Petersburg State Pediatric Medical UniversitySt. PetersburgRussia

Personalised recommendations