Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 160, Issue 1, pp 35–39 | Cite as

Identifi cation of Central Nervous System Proteins in Human Blood Serum and Plasma

  • Yu. V. MiroshnichenkoEmail author
  • N. A. Petushkova
  • N. B. Teryaeva
  • A. V. Lisitsa
  • V. G. Zgoda
  • A. Yu. Belyaev
  • A. A. Potapov
Article

Mass-spectrometric identification of proteins in human blood plasma and serum was performed by comparing mass-spectra of fragmented peptides using Swiss-Prot and UniProtKB databases of amino acid sequences. After choosing the appropriate identification conditions we found that combination of spectrum search parameters are optimal for identification of CNS proteins. In the studied plasma and serum samples, 9 proteins involved into pathological processes in the nervous tissue were identified; 7 of them were identified in both plasma and serum.

Key Words

protein identification neurodegenerative diseases pathology of the central nervous system brain damage proteomics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Rodchenkova and S. Novikova, Analitika, 3, No. 10, 40-47 (2013).Google Scholar
  2. 2.
    J. M. de Bont, J. van Doorn, R. E. Reddingius, et al., Int. J. Cancer, 123, No. 3, 594-600 (2008).CrossRefPubMedGoogle Scholar
  3. 3.
    A. L. Capriotti, G. Caruso, C. Cavaliere, et al., Anal. Chim. Acta., 740, 58-65 (2012).CrossRefPubMedGoogle Scholar
  4. 4.
    G. N. Chaldakov, M. Fiore, A.B. Tonchev, and L. Aloe, Cell Biol. Int., 34, No. 10, 1051-1053 (2010).CrossRefPubMedGoogle Scholar
  5. 5.
    P. Gautam, S. C. Nair, K. Ramamoorthy, et al., PLoS One, 8, No. 8, doi:  10.1371/journal.pone.0072584 (2013).
  6. 6.
    N. Gonzalez, T. Nakagawa, S. A. Mantey, et al., J. Pharmacol. Exp. Ther., 331, No. 1, 265-276 (2009).PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    M. F.Guo, J. Z. Yu, and C. G. Ma, Folia Neuropathol., 49, No. 2, 78-87 (2011).PubMedGoogle Scholar
  8. 8.
    H. Kataria, N. Shah, S. C. Kaul, et al., Evid. Based Complement. Alternat. Med., 2011, ID 267614 (2011).CrossRefGoogle Scholar
  9. 9.
    V. K. Khemka, D. Bagchi, K. Bandyopadhyay, et al., J. Alzheimer Dis., 41, No. 2, 525-533 (2014).Google Scholar
  10. 10.
    V. Lange, P. Picotti, B. Domon, and R. Aebersold, Mol. Syst. Biol., 4, 222 (2008)PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    F. Mann, S. Chauvet, and G. Rougon, Prog. Neurobiol., 82, No. 2, 57-79 (2007).CrossRefPubMedGoogle Scholar
  12. 12.
    A. I. Nepomuceno, R. J. Gibson, S. M. Randall, and D. C. Muddiman, J. Proteome Res., 13, No. 2, 777-785 (2014).PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    UniProt Consortium. Nucl. Acids Res., No. 41 (2013). Database issue D43-7.Google Scholar
  14. 14.
    W. C. Weng, W.T. Lee, W. M. Hsu, et al., J. Formos. Med. 110, No. 7, 428-437 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yu. V. Miroshnichenko
    • 1
    Email author
  • N. A. Petushkova
    • 1
  • N. B. Teryaeva
    • 2
  • A. V. Lisitsa
    • 1
  • V. G. Zgoda
    • 1
  • A. Yu. Belyaev
    • 1
  • A. A. Potapov
    • 2
  1. 1.V. N. Orekhovich Research Institute of Biomedical ChemistryMoscowRussia
  2. 2.N. N. Burdenko Research Institute of NeurosurgeryRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations