Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 159, Issue 6, pp 740–742 | Cite as

Effect of α7n-Acetylcholine Receptor Activation and Antibodies to TNF-α on Mortality of Mice and Concentration of Proinflammatory Cytokines During Early Stage of Sepsis

  • P. F. ZabrodskiiEmail author
  • M. S. Gromov
  • V. V. Maslyakov
Article

Experiments on random-bred albino mice showed that activation α7n-acetylcholine receptors with anabasine (0.5 LD50) and the use of antibodies to TNF-α (1 mg/kg) 2 h before sepsis modeling significantly reduces mortality of mice from experimental sepsis (intraperitoneal injection of E. coli) due to a decrease in the blood concentration of proinflammatory cytokines TNF-α, IL-1β, and IL-6. After combined administration of anti-TNF-α antibodies and anabasine, an additive effect was observed.

Key Words

cholinergic anti-inflammatory pathway sepsis α7n-acetylcholine receptors antibodies to TNF-α proinflammatory cytokines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. F. Zabrodskii, Farmakol. Toksikol., 49, No. 2, 57-60 (1987).Google Scholar
  2. 2.
    P. F. Zabrodskii, Bull. Exp. Biol. Med., 120, No. 2, 809-811 (1995).CrossRefGoogle Scholar
  3. 3.
    P. F. Zabrodskii, V. G. Lim, M. S. Shekhter, and A. V. Kuzmin, Bull. Exp. Biol. Med., 153, No. 5, 700-703 (2012).CrossRefPubMedGoogle Scholar
  4. 4.
    J. R. Bradley, J. Pathol., 214, No. 2, 149-160 (2008).CrossRefPubMedGoogle Scholar
  5. 5.
    L. V. Borovikova, S. Ivanova, M. Zhang, et al., Nature, 405, 458-462 (2000).CrossRefPubMedGoogle Scholar
  6. 6.
    S. Iho, Y. Tanaka, R. Takauji, et al., J. Leukoc. Biol., 74, No. 5, 942-951 (2003).CrossRefPubMedGoogle Scholar
  7. 7.
    G. S. Martin, Expert Rev. Anti Infect. Ther., 10, No. 6, 701-706 (2012).PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    P. Newham, D. Ross, P. Ceuppens, et al., Inflamm. Res., 63, No. 2, 149-160 (2014).CrossRefPubMedGoogle Scholar
  9. 9.
    S. L. Oke and K. J. Tracey, J. Leukoc. Biol., 83, No. 3, 512-517 (2008).CrossRefPubMedGoogle Scholar
  10. 10.
    V. A. Pavlov, Int. J. Clin. Exp. Med., 1, No. 3, 203-212 (2008).PubMedCentralPubMedGoogle Scholar
  11. 11.
    M. Pohanka, Int. J. Mol. Sci., 13, No. 2, 2219-2238 (2012).PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    S. B. Pruett, R. Fan, B. Cheng, et al., Toxicol. Sci., 117, No. 2, 314-324 (2010).PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    M. Rosas-Ballina and K. J. Tracey, Neuron, 64, No. 1, 28-32 (2009).PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    D. J. Song, X. Y. Huang, L. C. Ren, et al., Zhonghua Shao Shang Za Zhi, 25, No. 1, 36-41 (2009).PubMedGoogle Scholar
  15. 15.
    K. D.Welch, J. A. Pfister, D. R. Gardner, et al., J. Appl. Toxicol., 33, No. 9, 1017-1026 (2013).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • P. F. Zabrodskii
    • 1
    Email author
  • M. S. Gromov
    • 1
  • V. V. Maslyakov
    • 1
  1. 1.Saratov Branch of Samara Medical Institute REAVIZSaratovRussia

Personalised recommendations