Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 159, Issue 4, pp 443–445 | Cite as

Proliferation, Migration, and Production of Nitric Oxide by Bone Marrow Multipotent Mesenchymal Stromal Cells from Wistar Rats in Hypoxia and Hyperglycemia

  • A. P. Lykov
  • Yu. V. Nikonorova
  • N. A. Bondarenko
  • O. V. Poveshchenko
  • I. I. Kim
  • A. F. Poveshchenko
  • V. I. Konenkov
Article

We studied proliferation, migration, and secretion of NO by bone marrow multipotent mesenchymal stromal cells from Wistar rats during conditioning under hypoxic and hyperglycemic conditions and the effect of erythropoietin on these parameters. A stimulating effect of erythropoietin on cell proliferation under normal conditions and activation of cell proliferation under conditions of hypoxia and hyperglycemia were demonstrated. Erythropoietin abolishes suppression of cell proliferation in culture with normal glucose level under conditions of H2O2-induced hypoxia, while under conditions of hyperglycemia, inhibition of cell proliferation becomes more pronounced. Hypoxia promotes activation of cell migration along the growth factor concentration gradient and addition of erythropoietin to the nutrient medium leads to a decrease in cell migration activity. Erythropoietin stimulates NO production by cells cultured under the conditions of hypoxia and hyperglycemia.

Key Words

multipotent mesenchymal stromal cells oxidative stress hyperglycemia erythropoietin proliferation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Yu. Efimenko, E. E. Starostina, K. A. Rubina, et al., Tsitologiya, 52, No. 2, 144–154 (2010).Google Scholar
  2. 2.
    M. Yu. Zakharov, Klin. Nefrol., No. 1, 16–21 (2009).Google Scholar
  3. 3.
    A. P. Lykov, N. A. Bondarenko, L. V. Sakhno, et al., Fundament. Issled., No. 4–2, 296–301 (2014).Google Scholar
  4. 4.
    B. B. Beleslin-Cokic, V. P. Cokic, X. Yu, et al., Blood, 104, No. 7, 2073–2080 (2004).CrossRefPubMedGoogle Scholar
  5. 5.
    T. E. Ichim, F. Solano, and F. Lara, Int. Arch. Med., 3, 30 (2010).PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    L. Lafontaine, P. Chaudhry, M. J. Lafleur, et al., Biol. Reprod., 84, No. 3, 553–559 (2011).CrossRefPubMedGoogle Scholar
  7. 7.
    S. Li Calzi, M. B. Neu, L. C. Shaw, and M. B. Grant, EPMA J., 1, No. 1, 88–100 (2010).PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Z. Pasha, Y. Wang, R. Sheikh, et al., Cardiovasc. Res., 77, No. 1, 134–142 (2008).CrossRefPubMedGoogle Scholar
  9. 9.
    E. C. Perin, M. Tian, F. C. Marini 3rd, et al., PLoS One, 6, No. 9, e22949, doi: 10.1371/journal.pone.0022949 (2011).Google Scholar
  10. 10.
    G. Vertelov, L. Kharazi, M. G. Muralidhar, et al., Stem Cell Res. Ther., 4, No. 1, 5 (2013).PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    F. W. Wang, Z. Wang, Y. M. Zhang, et al., J. Cell. Biochem., 114, No. 10, 2346–2355 (2013).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • A. P. Lykov
    • 1
  • Yu. V. Nikonorova
    • 1
  • N. A. Bondarenko
    • 1
  • O. V. Poveshchenko
    • 1
  • I. I. Kim
    • 1
  • A. F. Poveshchenko
    • 1
  • V. I. Konenkov
    • 1
  1. 1.Research Institute of Clinical and Experimental LymphologyNovosibirskRussia

Personalised recommendations