Bulletin of Experimental Biology and Medicine

, Volume 158, Issue 6, pp 756–761 | Cite as

Comparative Analysis of the Anxiolytic Effects of 3-Hydroxypyridine and Succinic Acid Derivatives

  • I. A. Volchegorskii
  • I. Yu. Miroshnichenko
  • L. M. Rassokhina
  • R. M. Faizullin
  • M. P. Malkin
  • K. E. Pryakhina
  • A. V. Kalugina
Pharmacology and Toxicology

Threefold administration of 3-hydroxypyridine derivatives emoxipine and mexidol in optimal doses corresponding to the therapeutic dose range for humans produced an anxiolytic effect and stimulated risk behavior in the elevated plus maze test in rats. These effects were most pronounced after injection of 3-hydroxypyridine derivative emoxipine. Combination of 3-hydroxypyridine cation and succinate anion in the mexidol structure led to attenuation of the anxiolytic effect and less pronounced stimulation of the risk behavior. By the anxiolytic effect and induction of risk behavior, emoxipine and mexidol were close to the reference substance amitriptyline. Reamberin, a succinic acid derivative, had no pronounced tranquilizing properties, but risk behavior induction was similar to that produced by mexidol. In contrast to other test agents, the reference substance α-lipoic acid produced anxiogenic effects and suppressed risk behavior. The obtained results suggest that Russian-made 3-hydroxypyridine derivatives emoxipine and mexidol are promising preparations for the treatment of anxiety disorders.

Key Words

derivatives of 3-hydroxypyridine and succinic acid anxiolytic activity risk Behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. A. Volchegorskii, I. I. Dolgushin, O. L. Kolesnikov, and V. E. Tseilikman, Experimental Modeling and Laboratory Estimation of Human Adaptive Reactions [in Russian], Chelyabinsk (2000).Google Scholar
  2. 2.
    I. A. Volchegorskii, M. G. Moskvicheva, and E. N. Chashchina, Klin. Med., 82, No. 11, 31-35 (2004).Google Scholar
  3. 3.
    I. A. Volchegorskii, I. Yu. Miroshnichenko, L. M. Rassokhina, and R. M. Faizullin, Eksp. Klin. Farmakol., 76, No. 7, 6-10 (2013).PubMedGoogle Scholar
  4. 4.
    I. A. Volchegorskii, E. V. Pravdin, and T. V. Uzlova, Bull. Exp. Biol. Med., 156, No. 3, 347-352 (2014).CrossRefPubMedGoogle Scholar
  5. 5.
    A. E. Grigor’eva, D. A. Smagin, N. P. Bondar’, et al., Zh. Vyssh. Nervn. Deyat., 63, No. 4, 486-494 (2013).Google Scholar
  6. 6.
    R. A. Kopaladze, Uspekhi Fiziol. Nauk, 29, No. 4, 74-92 (1998).Google Scholar
  7. 7.
    A. B. Smulevich, Depressions during Somatic and Psychical Disorders [in Russian], Moscow (2003).Google Scholar
  8. 8.
    J. J. Buccafusco, Methods of Behavioral Analysis in Neuroscience, London; New York (2009).Google Scholar
  9. 9.
    A. Loche, F. Simonetti, C. Lobina, et al., Front. Psychiatry, 3, No. 8, doi: 10.3389/fpsyt.2012.00008 (2012).
  10. 10.
    E. J. Nestler, S. E. Hyman, R. S. Malenka, Molecular Neuropharmacology: a Foundation for Clinical Neuroscience, New York (2001).Google Scholar
  11. 11.
    A. A. Walf, and C. A. Frye, Nat. Protoc., 2, No. 2, 322-328 (2007).CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • I. A. Volchegorskii
    • 1
  • I. Yu. Miroshnichenko
    • 1
  • L. M. Rassokhina
    • 1
  • R. M. Faizullin
    • 1
  • M. P. Malkin
    • 1
  • K. E. Pryakhina
    • 1
  • A. V. Kalugina
    • 1
  1. 1.Department of PharmacologySouth Ural State Medical University, Ministry of Health of the Russian FederationChelyabinskRussia

Personalised recommendations