Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 158, Issue 3, pp 349–351 | Cite as

Nootropic Dipeptide Noopept Enhances Inhibitory Synaptic Transmission in the Hippocampus

  • I. S. PovarovEmail author
  • R. V. Kondratenko
  • V. I. Derevyagin
  • R. U. Ostrovskaya
  • V. G. Skrebitskii
Article

Application of nootropic agent Noopept on hippocampal slices from Wistar rats enhanced the inhibitory component of total current induced by stimulation of Shaffer collaterals in CA1 pyramidal neurons, but did not affect the excitatory component. A direct correlation between the increase in the amplitude of inhibitory current and agent concentration was found. The substance did not affect the release of inhibitory transmitters from terminals in the pyramidal neurons, which indicated changes in GABAergic interneurons.

Key Words

hippocampal slices patch-clamp Shaffer collaterals Noopept inhibitory interneurons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Vlasenko and M. A. Minton, Ann. Klin. Eksp. Nevrol., 3, No. 2, 37-42 (2009).Google Scholar
  2. 2.
    A. G. Vlasenko, D. K. Morris, and M. A. Minton, Ann. Klin. Eksp. Nevrol., 4, No. 4, 10-14 (2010).Google Scholar
  3. 3.
    3 V. G. Skrebitskii, N. A. Kapai, V. I. Derevyagin, and R. V. Kondratenko, Ann. Klin. Eksp. Nevrol., 2, No. 2, 23-27 (2008).Google Scholar
  4. 4.
    S. S. Boiko, T. A. Gudasheva, M. V. Vichuzhanin, et al., Bull. Exp. Biol. Med., 149, No. 6, 709-711 (2010).PubMedCrossRefGoogle Scholar
  5. 5.
    J. Basu, K. V. Srinivas, S. K. Cheung, et al., Neuron, 79, No. 6, 1208-1221 (2013).PubMedCrossRefGoogle Scholar
  6. 6.
    T. Freund and I. Katona, Neuron, 56, No. 1, 33-42 (2007).PubMedCrossRefGoogle Scholar
  7. 7.
    T. A. Gudasheva, S. S. Boyko, R. U. Ostrovskaya, et al., Eur. J. Drug Metab. Pharmacokinet., 22, No. 3, 245-252 (1997).PubMedCrossRefGoogle Scholar
  8. 8.
    A. N. Inozemtsev, S. S. Trofimov, G. G. Borlikova, et al., Eksp. Klin. Farmakol., 61, No. 3, 10-12 (1998).PubMedGoogle Scholar
  9. 9.
    S. Karnup and A. Stelzer, J. Physiol., 516, Pt. 2, 485-504 (1999).PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    R. V. Kondratenko, V. I. Derevyagin, and V. G. Skrebitsky, Neurosci. Lett., 476, No. 2, 70-73 (2010).PubMedCrossRefGoogle Scholar
  11. 11.
    R. G. Morris, P. Garrud, J. N. Rawlins, and J. O’Keefe, Nature, 297, 681-683 (1982).PubMedCrossRefGoogle Scholar
  12. 12.
    R. U. Ostrovskaya, A. P. Belnik, and Z. I. Storozheva, Bull. Exp. Biol. Med., 146, No. 1, 77-80 (2008).PubMedCrossRefGoogle Scholar
  13. 13.
    G. Ramanathan, N. I. Cilz, L. Kurada, et al., Neuropharmacology, 63, No. 7, 1218-1226 (2012).PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    M. Tsodyks, Hippocampus, 9, No. 4, 481-489 (1999).PubMedCrossRefGoogle Scholar
  15. 15.
    M. A. Wilson, and B. L. McNaughton, Science, 261, 1055-1058 (1993).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • I. S. Povarov
    • 1
    Email author
  • R. V. Kondratenko
    • 1
  • V. I. Derevyagin
    • 1
  • R. U. Ostrovskaya
    • 2
  • V. G. Skrebitskii
    • 1
  1. 1.Scientific Center for NeurologyRussian Academy of Medical SciencesMoscowRussia
  2. 2.Institute of PharmacologyRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations