Bulletin of Experimental Biology and Medicine

, Volume 157, Issue 4, pp 476–478 | Cite as

Effect of Heat Shock Protein 90 (Hsp90) on Migration and Invasion of Human Cancer Cells in Vitro

  • A. V. Snigireva
  • V. V. Vrublevskaya
  • Yu. Yu. Skarga
  • Yu. V. Evdokimovskaya
  • O. S. Morenkov
Article

We studied the effect of purifi ed native heat shock protein 90 (Hsp90) from bovine and mouse brain on migration and invasion of human glioblastoma (A-172) and fi brosarcoma (HT1080) cells. Hsp90 in concentrations of 0.01-0.10 mg/ml stimulated migration and invasion of tumor cells in vitro by 20-32% (p<0.05). Polyclonal antibodies to Hsp90 blocked the Hsp90-dependent stimulation of cell invasion, which indicates specifi city of the stimulating effect of extracellular Hsp90 on tumor cell invasion. Hence, extracellular Hsp90 can be considered as a promising molecular target, because its inhibition can suppress invasion and metastasizing of tumor cells.

Keywords

heat shock protein 90 (Hsp90) cell migration cell invasion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Animal Cell Culture, Ed. J. R. W. Masters, Oxford (2000), Vol. 1, P. 334.Google Scholar
  2. 2.
    G. Chiosis, M. Vilenchik, J. Kim, D. Solit, et al., Drug Discov. Today, 9, No. 20, 881-888 (2004).PubMedCrossRefGoogle Scholar
  3. 3.
    P. Csermely, T. Schnaider, C. Soti, et al., Pharmacol. Ther., 79, No. 2, 129-168 (1998).PubMedCrossRefGoogle Scholar
  4. 4.
    B. K. Eustace, T. Sakurai, J. K. Stewart, et al., Nat. Cell Biol., 6, No. 6, 507-514 (2004).PubMedGoogle Scholar
  5. 5.
    L. H. Pearl and C. Prodromou, Annu. Rev. Biochem., 75, 271-294 (2006).PubMedCrossRefGoogle Scholar
  6. 6.
    D. Picard, Cell. Mol. Life Sci., 59, No. 10, 1640-1648 (2002).PubMedCrossRefGoogle Scholar
  7. 7.
    E. Schmitt, M. Gehrmann, M. Brunet, et al., J. Leukoc. Biol., 81, 15-27 (2007).PubMedCrossRefGoogle Scholar
  8. 8.
    C. Selvamurugan, A. Lavanya, and B. Sivasankar, J. Sci. Industr. Res., 66, No. 8, 655-659 (2007).Google Scholar
  9. 9.
    K. Sidera, M. Gaitanou, D. Stellas, et al., J. Biol. Chem., 283, No. 4, 2031-2041 (2008).PubMedCrossRefGoogle Scholar
  10. 10.
    K. Sidera and E. Patsavoudi, Curr. Signal Transduction Ther., 4, No. 1, 51-58 (2009).CrossRefGoogle Scholar
  11. 11.
    Y. Skarga, V. Vrublevskaya, Y. Evdokimovskaya, and O. Morenkov, Biomed. Chromatogr., 23, No. 11, 1208-1216 (2009).PubMedCrossRefGoogle Scholar
  12. 12.
    D. Stellas, A. Karameris, and E. Patsavoudi, Clin. Cancer Res., 13, No. 6, 1831-1838 (2007).PubMedCrossRefGoogle Scholar
  13. 13.
    S. Tsutsumi and L. Neckers, Cancer Sci., 98, No. 10, 1536-1539 (2007).PubMedCrossRefGoogle Scholar
  14. 14.
    Y. Yang, R. Rao, J. Shen, et al., Cancer Res., 68, No. 12, 4833-4842 (2008).PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. V. Snigireva
    • 1
  • V. V. Vrublevskaya
    • 1
  • Yu. Yu. Skarga
    • 1
  • Yu. V. Evdokimovskaya
    • 1
  • O. S. Morenkov
    • 1
  1. 1.Institute of Cell Biophysics of Russian Academy of SciencesPushchinoRussia

Personalised recommendations