Bulletin of Experimental Biology and Medicine

, Volume 157, Issue 3, pp 344–349 | Cite as

Noopept Normalizes Parameters of the Incretin System in Rats with Experimental Diabetes

  • R. U. Ostrovskaya
  • N. N. Zolotov
  • I. V. Ozerova
  • E. A. Ivanova
  • I. G. Kapitsa
  • K. V. Taraban
  • A. M. Michunskaya
  • T. A. Voronina
  • T. A. Gudasheva
  • S. B. Seredenin
Pharmacology and Toxicology

Experiments on adult Wistar rats with streptozotocin-induced diabetes showed that antihyperglycemic activity of an original nootropic and neuroprotective drug Noopept (N-phenylacetyl-L-prolylglycine ethyl ester) is more pronounced under conditions of oral application than after intraperitoneal injection. These data provided a basis for studying the effect of Noopept on major indexes of the incretin system. Streptozotocin was shown to decrease the concentrations of incretin GLP-1 and insulin in the blood. Noopept had a normalizing effect on these parameters. This influence of Noopept was not related to the inhibition of a major enzyme metabolizing incretins (dipeptidyl peptidase IV). A reference drug sitagliptin also increased the contents of incretins and insulin, which was associated with the inhibition of dipeptidyl peptidase IV. It is known that GLP-1 increases NGF expression in the insular system. Our results suggest that the increase in incretin activity contributes to the antiapoptotic effect of Noopept on pancreatic β cells. The mechanism for an increase in blood GLP-1 level after oral application of Noopept requires further investigations.

Key Words

diabetes Noopept sitagliptin NGF glucagon-like peptide-1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. S. Boiko, S. A. Korotkov, V. P. Zherdev, et al., Eksp. Klin. Farmakol., 67, No. 1, 40-43 (2004).PubMedGoogle Scholar
  2. 2.
    N. N. Zolotov, O. A. Kutepova, T. A. Voronina, et al., Dokl. Akad. Nauk SSSR, 317, No. 1, 234-237 (1991).PubMedGoogle Scholar
  3. 3.
    V. F. Maiorova, Arkhiv Anat., No. 8, 101-109 (1960).Google Scholar
  4. 4.
    R. U. Ostrovskaya, Yu. V. Vakhitova, M. Kh. Salimgareeva, et al., Eksper. Klin. Farmakol., 73, No. 12, 2-5 (2010).Google Scholar
  5. 5.
    R. U. Ostrovskaya, I. V. Ozerova, T. A. Gudasheva, et al., Bull. Exp. Biol. Med., 156, No. 3, 342-346 (2014).PubMedCrossRefGoogle Scholar
  6. 6.
    S. Gezginci-Oktayoglu and S. Bolkent, Biochem. Cell Biol., 87, No. 4, 641-651 (2009).PubMedCrossRefGoogle Scholar
  7. 7.
    B. D. Green, N. Irwin, N. A. Duffy, et al., Eur. J. Pharmacol., 547, No. 1-3, 192-199 (2006).PubMedCrossRefGoogle Scholar
  8. 8.
    M. Lofty, J. Singh, H. Kalasz, et al., Open Med. Chem. J., 5, Suppl. 2, 82-92 (2011).Google Scholar
  9. 9.
    J. E. Shaw, R. A. Sicree, and P. Z. Zimmet, Diabetes Res. Clin. Pract., 87, No. 1, 4-14 (2010).PubMedCrossRefGoogle Scholar
  10. 10.
    C. Tourrel, D. Bailbe, M. J. Meile, et al., Diabetes, 50, No. 7, 1562-1570 (2001).PubMedCrossRefGoogle Scholar
  11. 11.
    T. Vilsboll, T. Krarup, C. F. Deacon, et al., Diabetes, 50, No. 3, 609-613 (2001).PubMedCrossRefGoogle Scholar
  12. 12.
    B. L. Wajchenberg, Endocr. Res., 28, No. 2, 187-218 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • R. U. Ostrovskaya
    • 1
  • N. N. Zolotov
    • 1
  • I. V. Ozerova
    • 1
  • E. A. Ivanova
    • 1
  • I. G. Kapitsa
    • 1
  • K. V. Taraban
    • 1
  • A. M. Michunskaya
    • 1
  • T. A. Voronina
    • 1
  • T. A. Gudasheva
    • 1
  • S. B. Seredenin
    • 1
  1. 1.V. V. Zakusov Research Institute of Pharmacology, the Russian Academy of Medical SciencesMoscowRussia

Personalised recommendations