Advertisement

Effects of Nanosized Lithium Carbonate Particles on Intact Muscle Tissue and Tumor Growth

  • N. P. Bgatova
  • Yu. I. Borodin
  • V. V. Makarova
  • A. A. Pozhidaeva
  • L. N. Rachkovskaya
  • V. I. Konenkov
Nanotechnologies

The effects of nanosized lithium carbonate particles on muscle tissue structure and development of experimental hepatocarcinoma-29 transplanted into the hip were studied in CBA mice. Necrotic changes in all structural components of the muscle were detected after intramuscular injection of nanosized lithium carbonate particles to intact animals. Regeneration of the muscle fi bers after lithium carbonate treatment was associated with a significant increase in macrophage count, number of microvessels, activation of fi broblasts, and complete recovery of the organ structure. Injection of lithium carbonate nanoparticles at the periphery of tumor growth caused tumor cell necrosis, destruction of the vascular bed, and attraction of neutrophils and macrophages to the tumor focus. After the preparation was discontinued, the tumor developed with lesser number of vessels, smaller tumor cells, and lesser deformation of the cell nuclei structure.

Keywords

nanosized lithium carbonate particles muscle tissue hepatocarcinoma 29 cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. I. Borodin, N. P. Bgatova, V. V. Shedina, et al., Therapeutic and Rehabilitative Medicine [in Russian], Novosibirsk (2010), pp. 18-24.Google Scholar
  2. 2.
    V. I. Kaledin, N. A. Zhukova, V. P. Nikolin, et al., Bull. Exp. Biol. Med., 148, No. 6, 903-907 (2009).PubMedCrossRefGoogle Scholar
  3. 3.
    D. Focosi, A. Azzarà, R. E. Kast, et al., J. Leukoc. Biol., 85, No. 1, 20-28 (2009).PubMedCrossRefGoogle Scholar
  4. 4.
    T. Force and J. R. Woodgett, J. Biol. Chem., 284, No. 15, 9643-9647 (2009).PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    J. Jiang, G. Oberdörster, A. Elder, et al., Nanotoxicology, 2, No. 1, 33-42 (2008).PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    R. E. Kast, Bone Marrow Transpant., 41, No. 1, 23-26 (2008).CrossRefGoogle Scholar
  7. 7.
    H. K. Kim, J. E. Kim, J. Chung, et al., J. Trace Elem. Med. Biol., 21, No. 3, 204-209 (2007).PubMedCrossRefGoogle Scholar
  8. 8.
    A. Sun, I. Shanmugam, J. Song, et al., Prostate, 67, No. 9, 976-988 (2007).PubMedCrossRefGoogle Scholar
  9. 9.
    J. S. Wang, C. L. Wang, J. F. Wen, et al., World J. Gastroenterol., 14, No. 25, 3982-3989 (2008).PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Q. Zhu, J. Yang, S. Han, et al., Prostate, 71, No. 8, 835-845 (2011).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • N. P. Bgatova
    • 1
  • Yu. I. Borodin
    • 1
  • V. V. Makarova
    • 1
  • A. A. Pozhidaeva
    • 1
  • L. N. Rachkovskaya
    • 1
  • V. I. Konenkov
    • 1
  1. 1.Research Institute of Clinical and Experimental LymphologySiberian Division of the Russian Academy of Medical SciencesNovosibirskRussia

Personalised recommendations