Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 156, Issue 6, pp 760–762 | Cite as

Changes in Thyroid Status of Rats after Prolonged Exposure to Low Dose Dichlorodiphenyltrichloroethane

  • N. V. Yaglova
  • V. V. Yaglov
Article

The effect of low dose dichlorodiphenyltrichloroethane (DDT), omnipresent ecotoxicant and endocrine disruptor, on the functioning of the endocrine system is an urgent problem. We studied the effect of low dose DDT on thyroid status in rats. Rats receiving DDT in a dose of 1.890±0.086 μg/kg for 6 weeks showed increased concentrations of thyroid hormones, particularly triiodothyronine, and reduced level of thyrotropin. Longer exposure reduced the production of thyroid hormones. The dynamics of thyroid status parameters during DDT treatment in a low dose was similar to changes observed during the development of hypothyroidism induced by iodine deficiency.

Keywords

thyroid hormones endocrine disruptors dichlorodiphenyltrichloroethane thyroid gland hypothyroidism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hygienic Requirements to Foodstuff Safety and Nutritive Value [in Russian], SanPin 2.3.2.1078-01.2008.Google Scholar
  2. 2.
    I. I. Dedov, G. A. Gerasimov, and N. Yu. Sviridenko, Iodine Defi ciency Diseases in the Russian Federation (Epidemiology, Diagnosis, and Prevention) [in Russian], Moscow (1999).Google Scholar
  3. 3.
    N. V. Yaglova, Bull. Exp. Biol. Med., 152, No. 2, 253-257 (2011).PubMedCrossRefGoogle Scholar
  4. 4.
    N. V. Yaglova and V. V. Yaglov, Vestn. Ross. Akad. Med. Nauk, No. 3, 56-61 (2012).Google Scholar
  5. 5.
    M. Boas, U. Feldt-Rasmussen, and K. Main, Mol. Cell. Endocrinol., 355, No. 2, 240-248 (2012).PubMedCrossRefGoogle Scholar
  6. 6.
    C. Capen, Prog. Clin. Biol. Res., 387, 173-191 (1994).PubMedGoogle Scholar
  7. 7.
    G. Daly and F. Wania, Environ. Sci. Technol., 39, No. 2, 385-398 (2005).PubMedCrossRefGoogle Scholar
  8. 8.
    R. Delport, R. Bornman, U. Maclntyre, et al., Environ. Health Perspect., 119, No. 5, 647-651 (2011).PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    E. Diamanti-Kandarakis, J. P. Bourguignon, L. Guidice, et al., Endocr. Rev., 30, No. 4, 293-342 (2009).PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    J. Muñoz-Arnanz and B. Jimenez, Environ. Pollut., 159, No. 12, 3640-3646 (2011).PubMedCrossRefGoogle Scholar
  11. 11.
    F. Santini, P. Vitti, G. Ceccarini, et al., J. Endocrinol. Invest., 26, No. 10, 950-955 (2003).PubMedCrossRefGoogle Scholar
  12. 12.
    O. Tebourbi, D. Hallegue, M. Yakoubi, et al., Environ. Toxicol. Pharmacol., 29, No. 3, 271-279 (2010).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Research Institute of Human MorphologyRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations