Bulletin of Experimental Biology and Medicine

, Volume 155, Issue 2, pp 233–235 | Cite as

Changes in the State of Hemoglobin in Patients with Coronary Heart Disease and Patients with Circulatory Failure

  • A. I. Yusipovich
  • N. A. Braze
  • O. G. Luneva
  • E. Yu. Parshina
  • A. A. Churin
  • O. V. Rodnenkov
  • G. V. Maksimov
Experimental Methods for Clinical Practice

Morphology of erythrocytes and conformation of hemoglobin-derived hematoporphyrin were studied in patients with coronary heart disease (CHD) and patients with circulatory failure using laser interference microscopy and Raman spectroscopy. Correlation was revealed (r=0.81) between hemoglobin oxygen saturation and oxyhemoglobin fraction in erythrocytes evaluated by Raman spectroscopy. Patients with CHD and patients with circulatory failure showed reduced oxygen-releasing capacity of hemoglobin and hemoglobin content and increased oxygen-binding capacity of hemoglobin, and hemoglobin affinity for oxygen. Significant differences from the control were observed only in patients with circulatory failure. It was found that hemoglobin content, hematocrit, and the shape of erythrocytes during CHD and circulatory failure did not differ from the control, whereas the area of erythrocytes was increased.

Key Words

erythrocyte hemoglobin oxygen transfer effi ciency coronary heart disease circulatory failure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. G. Luneva, N. A. Braze, M. Ya. Akhalaya, et al., Dokl. AN, 405, No. 6, 834–836 (2005).Google Scholar
  2. 2.
    G. V. Maksimov, O. G. Luneva, N. V. Maksimova, et al., Bull. Exp. Biol. Med., 140, No. 5, 510–513 (2005).PubMedCrossRefGoogle Scholar
  3. 3.
    G. V. Maksimov, N. V. Maksimova, A. A. Churin, et al., Biokhimiya, 66, No. 3, 365–370 (2001).Google Scholar
  4. 4.
    G. V. Maksimov, O. V. Rodnenkov, A. A. Churin, et al., Kardiologiya, 6, 8–12 (2001).Google Scholar
  5. 5.
    N. V. Maksimova, A. V. Nagovitsyn, and G. V. Maksimov, Bull. Exp. Biol. Med., 133, No. 4, 396–398 (2002).PubMedCrossRefGoogle Scholar
  6. 6.
    A. I. Yusipovich, N. Y. Bryzgalova, E. Yu. Parshina, et al., Bull. Exp. Biol. Med., 145, No. 3, 382–385 (2008).PubMedCrossRefGoogle Scholar
  7. 7.
    R. B. Ami, G. Barshtein, D. Zeltser, et al., Am. J. Physiol. Heart Circ. Physiol., 280, No. 5, H1982–H1988 (2001).PubMedGoogle Scholar
  8. 8.
    N. A. Brazhe, S. Abdali S., A. R. Brazhe, et al., Biophys. J., 97, No. 12, 3206–3214 (2009).PubMedCrossRefGoogle Scholar
  9. 9.
    O. V. Rodnenkov, O. G. Luneva, N. A. Ulyanova, et al., Pathophysiology, 11, No. 4, 209–213 (2005).PubMedCrossRefGoogle Scholar
  10. 10.
    A. I. Yusipovich, E. Y. Parshina, N. Y. Brysgalova, et al., J. Appl. Phys., 105, No. 10, 102,037-1-102,037-7 (2009).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. I. Yusipovich
    • 1
  • N. A. Braze
    • 1
  • O. G. Luneva
    • 1
  • E. Yu. Parshina
    • 1
  • A. A. Churin
    • 1
  • O. V. Rodnenkov
    • 1
  • G. V. Maksimov
    • 1
  1. 1.Department of Biophysics, Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations