Bulletin of Experimental Biology and Medicine

, Volume 155, Issue 2, pp 175–178 | Cite as

Effect of Anorexigenic Peptide Obestatin on Platelet Aggregation and Osmotic Resistance of Erythrocytes

  • E. E. Khirazova
  • M. G. Golubeva
  • M. V. Maslova
  • A. V. Graf
  • A. S. Maklakova
  • A. A. Baizhumanov
  • L. K. Trofimova
  • N. A. Sokolova
  • A. A. Kamenskii
Physiology

We studied the effects of the anorexigenic peptide obestatin on the coagulation system and blood rheology (by the parameters of platelet aggregation and osmotic resistance of erythrocytes) in vitro and in vivo. Obestatin inhibited in vitro platelet aggregation in the entire dose range and reduced osmotic resistance of erythrocytes in all doses except 300 nmol/kg (obestatin in a dose of 300 nmol/kg had no effect on this parameter). Similar to the results of in vitro experiments, intranasal, intraperitoneal, and subcutaneous administration of obestatin in a dose of 300 nmol/kg inhibited platelet aggregation and had no effect on the osmotic resistance of erythrocytes.

Key Words

obestatin platelet aggregation osmotic resistance of erythrocytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. L. Berkovskiy, S. A. Vasiliev, L. V. Zherdeva, et al., Handbook for the Study of Adhesion-Aggregation Functions of Platelets [in Russian], Moscow (2001).Google Scholar
  2. 2.
    V. V. Zinchuk and M. V. Borisyuk, Uspekhi Fiziol. Nauk, 30, No. 3, 38–48 (1998).Google Scholar
  3. 3.
    L. I. Idelson, Erythrocyte and Its Membrane. Guide to Hematology [in Russian], Moscow (2005).Google Scholar
  4. 4.
    B. I. Kuznik, Cellular and Molecular Mechanisms of Regulation of the Hemostasis System in Health and Disease [in Russian], Chita (2010).Google Scholar
  5. 5.
    A. J. Agnew, E. Robinson, C. M. McVicar, et al., Br. J. Pharmacol., 166, No. 1, 327–338 (2012).PubMedCrossRefGoogle Scholar
  6. 6.
    L. K. Bowles, J. A. Cooper, D. J. Howarth, et al., Blood Coagul. Fibrinol., 14, No. 6, 569–573 (2003).CrossRefGoogle Scholar
  7. 7.
    G. Gourcerol, M. Million, D. W. Adelson, et al., Peptides, 27, No. 11, 2811–2819 (2006).PubMedCrossRefGoogle Scholar
  8. 8.
    I. A. Hagberg, U. O. Solvik, H. Opdahl, et al., Platelets, 10, No. 6, 382–390 (1999).PubMedCrossRefGoogle Scholar
  9. 9.
    V. R. Jackson, H. P. Nothacker, and O. Civelli, Neuroreport., 17, No. 8, 813–816 (2006).PubMedCrossRefGoogle Scholar
  10. 10.
    K. K. McKee, C. P. Tan, O. C. Palyha, et al., Genomics, 46, No. 3, 426–434 (1997).PubMedCrossRefGoogle Scholar
  11. 11.
    M. S. Mondal, K. Toshinal, H. Ueno, et al., J. Endocrinol., 198, No. 2, 339–346 (2008).PubMedCrossRefGoogle Scholar
  12. 12.
    J. E. Morley, S. A. Farr, R. L. Sell, et al., Peptides, 32, No. 4, 776–780 (2011).PubMedCrossRefGoogle Scholar
  13. 13.
    J. V. Zhang, P. G. Ren, O. Avsian-Kretchmer, et al., Science, 310, 996–999 (2005).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • E. E. Khirazova
    • 1
  • M. G. Golubeva
    • 1
  • M. V. Maslova
    • 1
  • A. V. Graf
    • 1
  • A. S. Maklakova
    • 1
  • A. A. Baizhumanov
    • 2
  • L. K. Trofimova
    • 2
  • N. A. Sokolova
    • 1
  • A. A. Kamenskii
    • 1
  1. 1.Department of Human and Animal PhysiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Department of Biophysics, Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations