Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 153, Issue 5, pp 795–799 | Cite as

A Method of Creating a Cell Monolayer Based on Organotypic Culture for Screening of Physiologically Active Substances

  • V. Kh. Khavinson
  • N. S. Linkova
  • V. E. Pronyaeva
  • N. I. Chalisova
  • E. A. Koncevaya
  • V. O. Polyakova
  • T. V. Kvetnaya
  • I. M. Kvetnoy
  • G. M. Yakovlev
Methods

We developed a method of culturing and phenotyping of a monolayer of cells of the retinal tissue, thymus and spleen on the basis of organotypic culture. All characteristic types of neurons and fi broblasts were found in their microenvironment in the retinal cell monolayer. Lymphocytes, macrophages, and fi broblasts were verifi ed in the monolayer of thymus and spleen cells. Histological staining, immunocytochemistry, and electron microscopy demonstrated the possibility of assessing the differentiation degree and functional activity of the cell monolayer. The developed technique preserves cell-cell interactions and a variety of cell types characteristic of the examined organ in the monolayer. This opens up new prospects for its application in basic research and in screening of different physiologically active substances.

Key Words

monolayer microenvironment organotypic culture screening physiologically active substances 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Alvarez, K. Lee, and E. Abel-Santos, Antimicrob. Agents Chemother., 54, No. 12, 5329-5336 (2010).PubMedCrossRefGoogle Scholar
  2. 2.
    V. N. Anisimov and V. Kh. Khavinson, Biogerontology, 11, No. 2, 139-149 (2010).PubMedCrossRefGoogle Scholar
  3. 3.
    N. I. Chalisova, V. A. Penniyainen, A. V. Komashnya, and A. D. Nozdrachev, Dokl. Biol. Sci., 406, 7-10 (2006).PubMedCrossRefGoogle Scholar
  4. 4.
    N. Chalisova and A. Zakutzkii, Cell Biol. Int., 32, No. 12, 1574-1577 (2008).PubMedCrossRefGoogle Scholar
  5. 5.
    L. I. Fedoreyeva, I. I. Kireev, V. Kh. Khavinson, and B. F. Vanyushin, Biochemistry, 76, No. 11, 1210-1219 (2011).PubMedGoogle Scholar
  6. 6.
    F. B. Gordon and A. L. Quan, Antimicrob. Agents Chemoter., 2, No. 3, 242-244 (1972).CrossRefGoogle Scholar
  7. 7.
    C. D. Humphrey and F. E. Pittman, Stain Technol., 45, 9-14 (1974).Google Scholar
  8. 8.
    V. Kh. Khavinson, Neuro Endocrinol. Lett., 23, Suppl. 3, 11-144 (2002).Google Scholar
  9. 9.
    H. Krowicka, J. E. Robinson, R. Clark, et al., AIDS Res. Hum. Retroviruses, 24, No. 7, 957-967 (2008).PubMedCrossRefGoogle Scholar
  10. 10.
    I. M. Kvetnoy, I. O. Smirnova, and V. O. Polyakova, Neuroembryol. Aging, 4, Nos. 1-2, 102-111 (2007).Google Scholar
  11. 11.
    W. Mao, R. T. Yan, and S. Z. Wang, Mol. Vis., 14, 2309-2320 (2008).PubMedGoogle Scholar
  12. 12.
    S. Z. Wang, W. Ma, R. T. Yan, and W. Mao, Expert. Opin. Biol. Ther., 10, No. 8, 1227-1239 (2010).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • V. Kh. Khavinson
    • 1
    • 2
  • N. S. Linkova
    • 2
  • V. E. Pronyaeva
    • 2
  • N. I. Chalisova
    • 1
    • 2
  • E. A. Koncevaya
    • 2
  • V. O. Polyakova
    • 3
  • T. V. Kvetnaya
    • 2
  • I. M. Kvetnoy
    • 3
  • G. M. Yakovlev
    • 2
  1. 1.I. P. Pavlov Institute of Physiology of Russian Academy of ScienceSt. PetersburgRussia
  2. 2.St. Petersburg Institute of Bioregulation and GerontologySt. PetersburgRussia
  3. 3.D. O. Ott Research Institute of Obstetrics and GynecologyNorth-West Division of Russian Academy of Medical SciencesSt. PetersburgRussia

Personalised recommendations