Bulletin of Experimental Biology and Medicine

, Volume 153, Issue 4, pp 586–590 | Cite as

Neuroprotective Effect of Mesenchymal and Neural Stem and Progenitor Cells on Sensorimotor Recovery after Brain Injury

  • R. A. Poltavtseva
  • D. N. Silachev
  • S. V. Pavlovich
  • M. I. Kesova
  • K. N. Yarygin
  • A. Yu. Lupatov
  • L. V. Van’ko
  • M. P. Shuvalova
  • G. T. Sukhikh
Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)

We studied the effect of systemic administration of multipotent stem cells on impaired neurological status in rats with brain injury. It was found that transplantation of multipotent mesenchymal stromal cells of the bone marrow or human neural stem and progenitor cells to rats with local brain injury promoted recovery of the brain control over locomotor function and proprioceptive sensitivity of forelegs. The dynamics of neurological recovery was similar after transplantation of fetal neural stem and progenitor cells and multipotent mesenchymal stromal cells. Transplantation of cell cultures improved survival of experimental animals. It should be noted that administration of neural stem and progenitor cells prevented animal death not only in the acute traumatic period, but also in delayed periods.

Key Words

local brain injury neurological status disturbances rat survival intravenous transplantation of fetal multipotent mesenchymal stromal cells and human neural stem and progenitor cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Poltavtseva, A. V. Revishchin, M. A. Aleksandrova, et al., Ontogenez, 34, No. 3, 211-215 (2003).PubMedGoogle Scholar
  2. 2.
    A. F. Tsyb, V. V. Yuzhakov, L. M. Roshal, et al., Kletoch. Tekhnol. Biol. Med., No. 1, 23-37 (2009).Google Scholar
  3. 3.
    F. Barnabe-Heider and J. Frisen, Cell Stem Cell, 3, No. 3, 16-24 (2008).PubMedCrossRefGoogle Scholar
  4. 4.
    D. M. Feeney, M. G. Boyeson, R. T. Linn, et al., Brain Res., 211, No. 1, 67-77 (1981).PubMedCrossRefGoogle Scholar
  5. 5.
    J. Jolkkonen, K. Puurunen, S. Rantakomi, et al., Eur. J. Pharmacol., 400, Nos. 2-3, 211-219 (2000).PubMedCrossRefGoogle Scholar
  6. 6.
    P. Lu, L. L. Jones, E. Y. Snyder, and M. H. Tuszynski, Exp. Neurol., 181, No. 2, 115-129 (2003).PubMedCrossRefGoogle Scholar
  7. 7.
    G. Martino and P. Stefano, Nat. Rev. Neurosci., 7, 395-406 (2006).PubMedCrossRefGoogle Scholar
  8. 8.
    Y. Omori, O. Honmou, K. Harada, еt. al., Brain Res., No. 1236, 30-38 (2008).Google Scholar
  9. 9.
    T. Schallert, S. M. Fleming, J. L. Leasure, et al., Neuropharmacology. 39, No. 5, 777-787 (2000).PubMedCrossRefGoogle Scholar
  10. 10.
    M. Shi, Z. W. Liu, and F. S. Wang, Clin. Exp. Immunol., 164, No. 1, 1-8 (2011).PubMedCrossRefGoogle Scholar
  11. 11.
    D. H. Smith, X. H. Chen, and J. E. Pierce, J. Neurotrauma, 14, No. 10, 715-727 (1997).PubMedCrossRefGoogle Scholar
  12. 12.
    A. Trounson, R. G. Thakar, G. Lomax, and D. Gibbons, BMC Med., 9, 52 (2011).PubMedCrossRefGoogle Scholar
  13. 13.
    K. Wakabayashi, A. Nagai, A. M. Sheikh, et al., J. Neurosci. Res., 88, No. 5, 1017-1025 (2010).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • R. A. Poltavtseva
    • 1
  • D. N. Silachev
    • 2
  • S. V. Pavlovich
    • 1
  • M. I. Kesova
    • 1
  • K. N. Yarygin
    • 3
  • A. Yu. Lupatov
    • 3
  • L. V. Van’ko
    • 1
  • M. P. Shuvalova
    • 1
  • G. T. Sukhikh
    • 1
  1. 1.V. I. Kulakov Research Center of Obstetrics, Gynecology, and PerinatologyMinistry of Health and Social Development of the Russian FederationMoscowRussia
  2. 2.A. N. Belozerskii Institute of Physicochemical BiologyM. V. Lomonosov Moscow Medical UniversityMoscowRussia
  3. 3.V. N. Orekhovich Research Institute of Biomedical ChemistryRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations