Bulletin of Experimental Biology and Medicine

, Volume 153, Issue 4, pp 508–512 | Cite as

Oxygen-Binding Characteristics of Erythrocyte in Children with Type I Diabetes Mellitus of Different Duration

  • V. A. Mityanina
  • E. Yu. Parshina
  • A. I. Yusipovich
  • G. V. Maksimov
  • A. A. Selischeva
Article

Oxygen-binding properties of erythrocyte hemoglobin were studied in children with type 1 diabetes mellitus by Raman spectroscopy. The content of hemoglobin-oxygen complexes increased significantly only in children with lasting disease (more than 1 year); oxygen-binding capacity of hemoglobin is significantly changed, while its capacity to release oxygen remained unchanged. These changes were paralleled by alteration of hemoglobin affinity for oxygen. The area and content of hemoglobin were studied by laser interference microscopy. Hemoglobin content increased significantly in erythrocytes of patients with a more than 1-year history of type 1 diabetes mellitus. In these children, a significant inverse correlation between oxyhemoglobin fraction, oxygen binding capacity, and cholesterol content was found, this clinical parameter positively correlated with affinity for oxygen measured by Raman spectroscopy

Key Words

erythrocyte type 1 diabetes mellitus hemoporphyrine Raman spectrum laser interference microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Yu. Bryzgalova, N. A. Brazhe, A. I. Yusipovich, et al., Biofi z. Kletki, 54, No. 3, 442–447 (2009).Google Scholar
  2. 2.
    D. A. Korzhenevskii, V. N. Kuptsov, V. A. Mityanina, et al., Mass-Spektrometriya, 7, No. 3, 188–192 (2010).Google Scholar
  3. 3.
    K. R. Solovyov, L. L. Gladkov, A. S. Starukhin, et al., Porphyrine Spectroscopy: Fluctuating States [in Russian], Minsk (1985).Google Scholar
  4. 4.
    A. I. Yusipovich, N. Yu. Bryzgalova, E. Yu. Parshina, et al., Byull. Eksp. Biol. Med., 145, No. 3, 357–360 (2008).CrossRefGoogle Scholar
  5. 5.
    V. Chandramouli and J. Carter, Diabetes, 24, No. 3, 257–262 (1975).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Garnier, J. R. Attali, P. Valensi, et al., Metabolism, 39, No. 8, 794–798 (1990).PubMedCrossRefGoogle Scholar
  7. 7.
    H. Jin, X. Xing, H. Zhao, et al., Biochem. Biophys. Res. Commun., 391, No. 4, 1698–1702 (2010).PubMedCrossRefGoogle Scholar
  8. 8.
    L. Mazzanti, E. Faloia, A. Rabini, et al., Clin. Biochem., 25, No. 1, 41–46 (1992).PubMedCrossRefGoogle Scholar
  9. 9.
    O. V. Rodnenkov, O. G. Luneva, N. A. Ulyanova, et al., Pathophysiology, 11, No. 4, 209–213 (2005).PubMedCrossRefGoogle Scholar
  10. 10.
    M. De Rosa, M. Sanna, I. Messana, et al., Biophys. Chem., 72, No. 3, 323–325 (1998).PubMedCrossRefGoogle Scholar
  11. 11.
    A. I. Yusipovich, E. Y. Parshina, N. Y. Bryzgalova, et al., J. Appl. Phys., 105, No. 10, 102,037 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • V. A. Mityanina
    • 1
  • E. Yu. Parshina
    • 1
  • A. I. Yusipovich
    • 1
  • G. V. Maksimov
    • 1
  • A. A. Selischeva
    • 1
  1. 1.Biological FacultyM. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations