Bulletin of Experimental Biology and Medicine

, Volume 153, Issue 2, pp 259–262 | Cite as

Proliferative Activity and Viability of Fibroblast and Glioblastoma Cell on Various Types of Carbon Nanotubes

  • I. I. Bobrinetskii
  • R. A. Morozov
  • A. S. Seleznev
  • R. Ya. Podchernyaeva
  • O. A. Lopatina
Nanotechnologies

The effects of single-walled and multiwalled carbon nanotubes on proliferative activity and viability of human embryo fibroblasts and glioblastoma cells were studied. Low cytotoxic activity of single-walled carbon tubes was demonstrated. Possible mechanisms of nanotube effects on cell growth are discussed.

Key Words

nanotubes fibroblast glioblastoma proliferation viability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. I. Bobrinetskii, S. A. Ageyeva, V. K. Nevolin, et al., Izvestiya VUZov. Elektronika, No. 5, 33-40 (2008).Google Scholar
  2. 2.
    I. I. Bobrinetskii and V. K. Nevolin, Mikrosistemnaya Tekhnika, No. 4, 20-21 (2002).Google Scholar
  3. 3.
    All-Union Cell Culture Collection. Catalogue [in Russian], Moscow (1991), p. 118.Google Scholar
  4. 4.
    A. V. Krestinin, Ros. Khim. Zh., No. 5, 21-27 (2004).Google Scholar
  5. 5.
    L. B. Allen, G. P. Kotchey, Y. Chen, et al., J. Am. Chem. Soc., 131, No. 47, 17,194-17,205 (2009).CrossRefGoogle Scholar
  6. 6.
    M. Correa-Duarte et al., Nano Lett., 11, No. 4, 2233-2236 (2004).CrossRefGoogle Scholar
  7. 7.
    B. S. Harrison and A. Atala, Biomaterials, 28, No. 2, 344-353 (2007).PubMedCrossRefGoogle Scholar
  8. 8.
    M. A. Hussain, M. A. Kabir, and A. K. Sood, Cur. Sci., 96, No. 5, 664-673 (2009).Google Scholar
  9. 9.
    P. X. Ma, Adv. Drug. Deliv. Rev., 60, No. 2, 184-198 (2008).PubMedCrossRefGoogle Scholar
  10. 10.
    V. Raffaa, G. Ciofania, and S. Nitodasb, Carbon Volume, 46, No. 12, 1600-1610 (2008).CrossRefGoogle Scholar
  11. 11.
    C. M. Sayes, F. Liang, J. L. Hudson, et al., Toxicol. Lett., 161, No. 2, 135-142 (2006).PubMedCrossRefGoogle Scholar
  12. 12.
    S. K. Smart, A. I. Cassady, G. Q. Lu, and D. J. Martin, Carbon, 44, No. 6, 1034-1047 (2006).CrossRefGoogle Scholar
  13. 13.
    F. L. Yuen, G. Zak, S. D. Waldman, and A. Docoslis, Cytotechnology, 56, No. 1, 9-17 (2008).PubMedCrossRefGoogle Scholar
  14. 14.
    L. P. Zanello, B. Zhao, H. Hu, and R. C. Haddon, Nano Lett., 6, No. 3, 562-567 (2006).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • I. I. Bobrinetskii
    • 1
  • R. A. Morozov
    • 1
  • A. S. Seleznev
    • 1
  • R. Ya. Podchernyaeva
    • 2
  • O. A. Lopatina
    • 2
  1. 1.MIET National Research UniversityMoscowRussia
  2. 2.D. I. Ivanovsky Institute of Virology, Ministry of Health and Social Development of the Russian FederationMoscowRussia

Personalised recommendations