Bulletin of Experimental Biology and Medicine

, Volume 152, Issue 5, pp 595–599 | Cite as

β-Endorphin Effects on Antibody Production, Proliferation, and Secretion of Th1/Th2 Cytokines In Vivo

  • S. V. Gein
  • T. A. Baeva
  • V. O. Nebogatikov
  • S. P. Tendryakova
Immunology and Microbiology

Intraperitoneal injection of β-endorphin in doses of 1, 0.01, and 0.0005 μg/kg under conditions of systemic immunization increased the count of antibody-producing cells in the spleen and the titer of anti-erythrocyte antibodies in the plasma of experimental animals. Intraperitoneal β-endorphin stimulated proliferative activity of splenocytes in mice in the presence of both B- and T-cell mitogen, did not change the production of IFN-γ, reduced the level of IL-2, and stimulated the secretion of IL-4, the main Th2-polarizing factor.

Key Words

β-endorphin splenocytes cytokines IL-2 IL-4 IFN-γ 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Gein, T. A. Baeva, and O. A. Kichanova, Byull. Eksp. Biol. Med., 142, No. 8, 192-195 (2006).Google Scholar
  2. 2.
    S. V. Gein and K. G. Gorshkova, Byull. Eksp. Biol. Med., 145, No. 10, 427-430 (2008).Google Scholar
  3. 3.
    R. J. Bodnar, Peptides, 30, No. 12, 2432-2479 (2009).PubMedCrossRefGoogle Scholar
  4. 4.
    N. Boyadjieva, M. Dokur, J. P. Advis, et al., J. Immunol., 167, No. 10, 5645-5652 (2001).PubMedGoogle Scholar
  5. 5.
    M. Dokur, C. P. Chen, J. P. Advis, and D. K. Sarkar, J. Neuroimmunol., 166, Nos. 1-2. 29-38 (2005).PubMedCrossRefGoogle Scholar
  6. 6.
    L. M. Hemmick and J. M. Bidlack, J. Neuroimmunol., 29, Nos. 1-3, 239-248 (1990).PubMedCrossRefGoogle Scholar
  7. 7.
    L. Jia, H. Hara, T. Okochi, and S. Negoro, Int. J. Immunopharmacol., 14, No. 5, 809-819 (1992).PubMedCrossRefGoogle Scholar
  8. 8.
    A. W. Kusnecov, A. J. Husband, M. G. King, et al., Brain Behav. Immun., 1, No. 1, 88-97 (1987).PubMedCrossRefGoogle Scholar
  9. 9.
    A. E. Panerai, B. Manfredi, F. Granucci, and P. Sacerdote, J. Neuroimmunol., 58, No. 1, 71-76 (1995).PubMedCrossRefGoogle Scholar
  10. 10.
    B. K. Pederesen and L. Hoffman-Goetz, Physiol. Rev., 80, No. 3, 1055-1081 (2000).Google Scholar
  11. 11.
    P. K. Peterson, T. W. Molitor, and C. C. Chao, J. Neuroimmunol., 83, Nos. 1-2, 63-69 (1998).PubMedCrossRefGoogle Scholar
  12. 12.
    D. Refojo, D. Kovalovsky, J. I. Young, et al., J. Neuroimmunol., 131, Nos. 1-2, 126-134 (2002).PubMedCrossRefGoogle Scholar
  13. 13.
    E. M. Smith, Brain Behav. Immun., 22, No. 1, 3-14 (2008).PubMedCrossRefGoogle Scholar
  14. 14.
    A. Thiriot, A. M. Drapier, S. Memet, et al., Mol. Immunol., 46, No. 4, 601-612 (2009).PubMedCrossRefGoogle Scholar
  15. 15.
    P. Van den Bergh, R. Dobber, S. Ramlal, et al., Cell. Immunol., 154, No. 1, 109-122 (1994).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • S. V. Gein
    • 1
    • 2
  • T. A. Baeva
    • 1
  • V. O. Nebogatikov
    • 2
  • S. P. Tendryakova
    • 2
  1. 1.Institute of Ecology and Genetics of Microorganisms, the Ural Division of the Russian Academy of SciencesPermRussia
  2. 2.Perm State UniversityPermRussia

Personalised recommendations