Bulletin of Experimental Biology and Medicine

, Volume 152, Issue 5, pp 560–563 | Cite as

Semax Attenuates the Infl uence of Neonatal Maternal Deprivation on the Behavior of Adolescent White Rats

  • M. A. Volodina
  • E. A. Sebentsova
  • N. Y. Glazova
  • N. G. Levitskaya
  • L. A. Andreeva
  • D. M. Manchenko
  • A. A. Kamensky
  • N. F. Myasoedov
Article
  • 36 Downloads

Maternal deprivation in the early postnatal period significantly affects the behavior and development of different animals. Here we studied delayed effects of daily maternal deprivation (5 h/day) on physical development and behavior of white rats during postnatal days 1 to 14. Here we studied the possibility of reducing the negative consequences of deprivation by daily intranasal treatment with Semax, an analog of ACTH4-10, in a dose of 0.05 mg/kg from postnatal days 15 to 28. It was found that maternal deprivation decelerated the growth of young rats, boosted physical activity and emotional reactivity in novel environment, and increased anxiety in one-month-old animals. Semax weakened the impact of deprivation on animal body weight and normalized the levels of anxiety in rats.

Key Words

maternal deprivation Semax body weight anxiety locomotor activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. P. Ashmarin, V. N. Nezavibatko, N. F. Myasoedov, et al., Zh. Vyssh. Nervn. Dyeyat., 47, No. 3, 420-430 (1997).Google Scholar
  2. 2.
    N. G. Levitskaya, E. A. Sebentsova, L. A. Andreeva, et al., Fiziol. Zh., 88, No.11, 369-1377 (2002).Google Scholar
  3. 3.
    E. A. Sebentsova, A. V. Denisenko, N. G. Levitskaya, et al., Zh. Vyssh. Nervn. Dyeyat., 55, No. 2, 213-220 (2005).Google Scholar
  4. 4.
    K. J. Anand, Prog. Brain Res., 122, 117-129 (2000)PubMedCrossRefGoogle Scholar
  5. 5.
    K. J. Anand and F. M. Scalzo, Biol. Neonate, 77, No. 2, 69-82 (2000).PubMedCrossRefGoogle Scholar
  6. 6.
    I. P. Ashmarin, V. N. Nezavibatko, N. G. Levitskaya, et al., Neurosci. Res. Commun., 16, 105-112 (1995).Google Scholar
  7. 7.
    F. Benetti, P. B. Mello, J. S. Bonini, et al., Int. J. Dev. Neurosci., 27, No. 1, 59-64 (2009).PubMedCrossRefGoogle Scholar
  8. 8.
    C. Cannizzaro, F. Plescia, M. Martire, et al., Behav. Brain Res., 169, No. 1, 128-136 (2006).PubMedCrossRefGoogle Scholar
  9. 9.
    O. V. Dolotov, E. A. Karpenko, L. S. Inozemtseva, et al., Brain Res., 1117, No. 1, 54-60 (2006).PubMedCrossRefGoogle Scholar
  10. 10.
    F. S. Hall, Crit. Rev. Neurobiol., 12, Nos. 1-2, 129-162 (1998).PubMedGoogle Scholar
  11. 11.
    L. Lambas-Senas, O. Mnie-Filali, V. Certin, et al., Prog. Neuropsychopharmacol. Biol. Psychiatry, 33, No. 2, 262-268 (2009).PubMedCrossRefGoogle Scholar
  12. 12.
    C. R. Pryce, D. Bettschen, N. I. Nanz-Bahr, et al., Behav. Neurosci., 117, No. 5, 883-893 (2003).PubMedCrossRefGoogle Scholar
  13. 13.
    L. G. Russek and G. E. Schwartz, J. Behav. Med., 20, No. 1, 1-11 (1997).PubMedCrossRefGoogle Scholar
  14. 14.
    J. M. Spivey, J. Shumake, R. A. Colorado, et al., Dev. Psychobiol., 51, No. 3, 277-288 (2009).PubMedCrossRefGoogle Scholar
  15. 15.
    A. Yamazaki, Y. Ohtsuki, and T. Yoshihara, Physiol. Behav., 86, Nos. 1-2, 136-144 (2005).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • M. A. Volodina
    • 1
  • E. A. Sebentsova
    • 2
  • N. Y. Glazova
    • 2
  • N. G. Levitskaya
    • 2
  • L. A. Andreeva
    • 2
  • D. M. Manchenko
    • 1
  • A. A. Kamensky
    • 1
  • N. F. Myasoedov
    • 2
  1. 1.Department of Human and Animal Physiology, Biological FacultyM. V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of Molecular Genetics, Russian Academy of SciencesMoscowRussia

Personalised recommendations