Bulletin of Experimental Biology and Medicine

, Volume 152, Issue 4, pp 409–412

Effect of Imipramine and Prolyl Endopeptidase Inhibitor Benzyloxycarbonyl-Methionyl-2(S)-Cyanopyrrolidine on Activity of Proline-Specific Peptidases in the Brain of Rats with Experimental Anxious-Depressive Syndrome

  • N. N. Khlebnikova
  • N. A. Krupina
  • E. Yu. Kushnareva
  • N. N. Zolotov
  • G. N. Kryzhanovskii
General Pathology and Pathophysiology

Activities of prolyl endopeptidase and dipeptidyl peptidase IV in the frontal cortex, hypothalamus, nucleus accumbens, striatum, and hippocampus were measured in rats with the experimental anxious-depressive syndrome induced by treatment with a dipeptidyl peptidase IV inhibitor during the early postnatal period (days 5-18). Prolyl endopeptidase activity was elevated in the frontal cortex, hypothalamus, and nucleus accumbens. Increased activity of dipeptidyl peptidase IV was observed in the hypothalamus and striatum. Norepinephrine/serotonin reuptake inhibitor, imipramine, and noncompetitive prolyl endopeptidase inhibitor, benzyloxycarbonyl-methionyl-2(S)-cyanopyrrolidine, were shown to abolish depression-like behavior of animals in the forced swimming test. These compounds had a normalizing effect on activities of prolyl endopeptidase and dipeptidyl peptidase IV in brain structures of rats.

Key Words

dipeptidyl peptidase IV prolyl endopeptidase depression rats brain structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. A. Krupina, N. N. Zolotov, N. G. Bogdanova, et al., Byull. Eksp. Biol. Med., 142, No. 11, 497–499 (2006).Google Scholar
  2. 2.
    N. A. Krupina, E. Yu. Kushnareva, N. N. Khlebnikova, et al., Ibid., 147, No. 3, 254–260 (2009).CrossRefGoogle Scholar
  3. 3.
    N. A. Krupina, I. N. Orlova, and G. N. Kryzhanovskii, Ibid., 120, No. 8, 160–164 (1995).Google Scholar
  4. 4.
    N. A. Krupina, I. N. Orlova, and G. N. Kryzhanovskii, Zh. Vyssh. Nervn. Deyat., 49, No. 5, 865–876 (1999).Google Scholar
  5. 5.
    E. Yu. Kushnareva, N. A. Krupina, N. N. Khlebnikova, et al., Byull. Eksp. Biol. Med., 151, No. 6, 619–623 (2011).CrossRefGoogle Scholar
  6. 6.
    N. N. Khlebnikova, N. A. Krupina, I. N. Orlova, et al., Ibid., 147, No. 1, 27–31 (2009).CrossRefGoogle Scholar
  7. 7.
    L. F. Barrett, K. A. Lindquist, E. Bliss-Moreau, et al., Perspect. Psychol. Sci., 2, No. 3, 297–311 (2007).PubMedCrossRefGoogle Scholar
  8. 8.
    J. R. Kapoor and C. D. Sladek, Am. J. Physiol. Regul. Integr. Comp. Physiol., 280, No. 1, 69–78 (2001).Google Scholar
  9. 9.
    J. E. Knuuttila, P. Törönén, and E. Castren, Neurochem. Res., 6, 1235–1244 (2004).CrossRefGoogle Scholar
  10. 10.
    M. Maes and S. Bonaccorso, Acta Psychiatr. Scand., 109, No. 2, 126–131 (2004).PubMedCrossRefGoogle Scholar
  11. 11.
    M. Maes, F. Goossens, S. Scharpé, et al., Psychiatry Res., 58, No. 3, 217–225 (1995).PubMedCrossRefGoogle Scholar
  12. 12.
    P. T. Männistö, P. Tuomainen, O. Kutepova, et al., Pharmacol. Biochem. Behav., 49, No. 1, 33–40 (1994).PubMedCrossRefGoogle Scholar
  13. 13.
    G. Racagni and M. Popoli, Dialogues Clin. Neurosci., 10, No. 4, 385–400 (2008).PubMedGoogle Scholar
  14. 14.
    I. Schulz, B. Gerhartz, A. Neubauer, et al., Eur. J. Biochem., 269, No. 23, 5813–5820 (2002).PubMedCrossRefGoogle Scholar
  15. 15.
    S. R. Sesack and A. A. Grace, Neuropsychopharmacology, 35, No. 1, 27–47 (2010).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • N. N. Khlebnikova
    • 1
  • N. A. Krupina
    • 1
  • E. Yu. Kushnareva
    • 1
  • N. N. Zolotov
    • 2
  • G. N. Kryzhanovskii
    • 1
  1. 1.Laboratory for General Pathology of Nervous System, Institute of General Pathology and PathophysiologyRussian Academy of Medical SciencesMoscowRussia
  2. 2.Laboratory of Psychopharmacology, V. V. Zakusov Institute of PharmacologyRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations