Bulletin of Experimental Biology and Medicine

, Volume 149, Issue 4, pp 490–494 | Cite as

Models of Reactions of Human Heart as Nonlinear Dynamic System to Cosmic and Geophysical Factors

Article

The paper analyzes theoretical models of the adaptive modes of generation and stability of human heart as a nonlinear point source. The analysis encompasses only ECG time-domain dynamics. To solve the general problem of the study of the adaptive changes of the cardiosignal under the action of external periodic force and parametric noise, a new dynamic model is proposed, which incorporates two control physical parameters: power of signal generation and coefficient of diffuse signal scattering. For the entire set of parameters, the examined modeled nonlinear system demonstrated a number of various performance modes ranging from steady-state periodic and quasi-periodic states to chaos. The model showed that variations in cosmic, geophysical, and weather conditions in the frequency range of 0.1–0.9 Hz produce the greatest biotropic influence.

Key Words

heart dynamic systems geophysical factors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Vishnevskii, M. V. Ragulskaya, and S. N. Samsonov, Tekhnol. Zhiv. Sist., No. 4, 61–66 (2007).Google Scholar
  2. 2.
    B. M. Vladimirskii and N. A. Temuryants, Effect of Solar Ac tivity on Biosphere and Geliosphere [in Russian], Moscow (2000).Google Scholar
  3. 3.
    A. Yu. Loskutov and A. S. Mikhailov, Principles of Complex Systems Theory [in Russian], Moscow (2007).Google Scholar
  4. 4.
    V. N. Obridko, M. V. Ragulskaya, D. G. Strelkov, et al., Tekhnol. Zhiv. Sist., Nos. 2-3, 38–46 (2008).Google Scholar
  5. 5.
    L. S. Fainzil’berg, Information Technologies of Complex-Shape Signal Processing: Theory and Practice [in Russian], Kiev (2008).Google Scholar
  6. 6.
    S. M. Chibisov, V. V. Vishnevskii, and M. V. Ragulskaya, Byull. Eksp. Biol. Med., 145, No. 6, 714–718 (2008).CrossRefGoogle Scholar
  7. 7.
    A. Babloyantz and A. Destexhe, Biol. Cybern., 58, No. 3, 203–211 (l988).CrossRefGoogle Scholar
  8. 8.
    G. D. Clifford and P. E. McSharry, in: Fluctuations and Noise in Biological, Biophysical, and Biomedical Systems, Eds. D. Abbott, et al., SPIE International Society for Optical Engineering: Bellingham (2004), pp. 290–301.Google Scholar
  9. 9.
    A. Duggento, D. G. Luchinsky, V. N. Smelyanskiy, et al., Phys. Rev. E., 77, No. 6, 061106 (2008).CrossRefGoogle Scholar
  10. 10.
    N. Janson, A. N. Pavlov, and V. S. Anischenko, J. Bifur. Chaos, 8, 825–833 (1998).CrossRefGoogle Scholar
  11. 11.
    N. Wessel, J. Kurths, W. Ditto, and R. Bauernschmitt, Chaos, 17, No. 1, 015101 (2007).CrossRefPubMedGoogle Scholar
  12. 12.
    N. Wessel, H. Malberg, R. Bauernschmitt, and J. Kurths, J. Bifur. Chaos, 17, 3325–3371 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • V. V. Pipin
    • 1
  • M. V. Ragulskaya
    • 2
  • S. M. Chibisov
    • 3
  1. 1.Research Institute of Geophysics, Siberian Division of the Russian Academy of SciencesIrkutskRussia
  2. 2.Research Institute of Geomagnetism and Radio-Wave Propagation, Russian Academy of SciencesMoscowRussia
  3. 3.Department of MedicalRussian University of People FriendshipMoscowRussia

Personalised recommendations