Bulletin of Experimental Biology and Medicine

, Volume 148, Issue 5, pp 825–828 | Cite as

The Role of Cell Fusion in Physiological and Reparative Regeneration of the Cerebral Cortex

  • A. A. Pal’tsyn
  • N. B. Konstantinova
  • G. A. Romanova
  • F. M. Shakova
  • Yu. N. Kvashennikova
  • A. A. Kubatiev
Morphology and Pathomorphology

The prefrontal (cognitive) cerebral cortex of rats was studied by morphological and physiological methods 56 days after stroke induced by photothrombosis. The cognitive capacity impaired after the intervention was completely restored by this time. The count of fused cells (dikaryons) increased signifi cantly in experimental and sham-operated (control) animals in comparison with the early period (7 days) after surgery. Normalization of the dikaryon and mononuclear cell structure was observed after 56 days. Presumably, cell fusion promotes their morphological restoration and regeneration of the lost functional capacity. Fusion is regarded as a manifestation of physiological and reparative regeneration of the cortex.

Key Words

cell fusion physiological and reparative regeneration of CNS stroke 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Bures, O. Buresova, and J. R. Houston, Methods and Basic Experiments on Studies of the Brain and Behavior [in Russian], Moscow (1991).Google Scholar
  2. 2.
    A. A. Pal’tsyn, E. G. Kolokol’chikova, N. B. Konstantinova, et al., Byull. Exp. Biol. Med., 146, No. 10, 467–470 (2008).Google Scholar
  3. 3.
    J. B. Ackman, F. Siddiqi, R. S. Walikonis, and J. J. Lo Turco, J. Neurosci., 26, No. 44, 11,413–11,422 (2006).CrossRefGoogle Scholar
  4. 4.
    J. J. Breunig and J. I. Arellano, Ibid., 27, No. 7, 1507–1508 (2007).Google Scholar
  5. 5.
    H. Frielingsdorf, K. Schwarz, P. Brundin, and P. Mohapel, Proc. Natl. Acad. Sci. USA, 101, No. 27, 10,177–10,182 (2004).CrossRefGoogle Scholar
  6. 6.
    G. Gheusi and P. M. Lledo, Chem. Senses, 32, No. 4, 397–409 (2007).CrossRefPubMedGoogle Scholar
  7. 7.
    B. Kosaras and E. Snyder, Neural Stem Cells. Methods and Protocols, Humana Press Inc. (2002), pp. 157–178.Google Scholar
  8. 8.
    R. R. Leker, F. Soldner, I. Velasco, et al., Stroke, 38, No. 1, 153–161 (2007).CrossRefPubMedGoogle Scholar
  9. 9.
    S. M. Mooney and M. W. Miller, J. Neurosci., 27, No. 19, 5023–5032 (2007).CrossRefPubMedGoogle Scholar
  10. 10.
    G. Paxinos and S. Watson, Atlas of Anatomy of Rat Brain, San Diego (1986).Google Scholar
  11. 11.
    B. D. Watson, W. D. Dietrich, R. Busto, et al., Ann. Neurol., 17, No. 5, 497–504 (1985).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • A. A. Pal’tsyn
    • 1
  • N. B. Konstantinova
    • 1
  • G. A. Romanova
    • 1
  • F. M. Shakova
    • 1
  • Yu. N. Kvashennikova
    • 1
  • A. A. Kubatiev
    • 1
  1. 1.Institute of Pathology and PathophysiologyRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations