Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 148, Issue 5, pp 789–793 | Cite as

Distribution and Resorption of Polymeric Microparticles in Visceral Organs of Laboratory Animals after Intravenous Injection

  • E. I. Shishatskaya
  • A. V. Goreva
  • O. N. Voinova
  • G. S. Kalacheva
  • T. G. Volova
Biophysics and Biochemistry

Microparticles obtained by using 14C-labeled resorbable hydroxyaminobutyric acid polymer were injected into the caudal vein of laboratory animals without negative aftereffects for their growth and development and without changes in the macro- and microstructure of organs and tissues. The distribution of microparticles in the viscera and the dynamics of accumulation of carbon-containing polymer degradation products in the viscera were studied. The main targets for the particles are liver tissues, as well as renal and splenic tissues. The polymeric matrix of the microparticles is most actively destroyed in the spleen and liver. The presence of high-molecular-weight polymeric matrix in organs indicates the integrity of microparticles and the possibility of long-term (up to 12 weeks) functioning of polymeric particles in vivo.

Key Words

resorbable polyhydroxybutyrate microparticles intravenous injection 14visceral tissues 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. G. Volova, V. I. Sevastyanov, and E. I. Shishatskaya, Polyoxyalcanoates: Biodegradable Polymers for Medicine, Ed. V. I. Shumakov [in Russian], Krasnoyarsk (2006).Google Scholar
  2. 2.
    A. M. Genin, A. E. Ilyin, and A. S. Kaplanskii, Kosmich. Biol. Med., 35, No. 4, 14–20 (2001).Google Scholar
  3. 3.
    BIOPLASTOTAN Trademark, Registration Certificate No. 315652 at Federal Institute of Patent Expert Evaluation, application No. 2006703271/50, priority of 15.02.2006. MKTU Classes 01, 05, 10.Google Scholar
  4. 4.
    E. I. Shishatskaya and A. V. Goreva, Perspectivn. Mater., No. 4, 65–70 (2006).Google Scholar
  5. 5.
    E. I. Shishatskaya, A. V. Goreva, O. N. Voinova, et al., Byull. Eksp. Biol. Med., 145, No. 3, 333–336 (2008).CrossRefGoogle Scholar
  6. 6.
    E. I. Shishatskaya, A. V. Zhemchugova, and T. G. Volova, Antibiot. Khimioter., Nos. 2–3, 3–14 (2005).Google Scholar
  7. 7.
    W. Amass and B. A. Tighe, Polymer Int., 47, 89–144 (1998).CrossRefGoogle Scholar
  8. 8.
    I. Gursel, F. Korkusuz, F. Turesin, et al., Biomaterials, 22, No. 1, 73–80 (2001).CrossRefPubMedGoogle Scholar
  9. 9.
    D. Jendrossek, Adv. Biochem. Eng. Biotechnol., 71, 293–325 (2001).PubMedGoogle Scholar
  10. 10.
    A. C. Kassab, K. Xu, E. B. Denkbas, et al., J. Biomater. Sci. Polym. Ed., 8, No. 12, 947–961 (1997).CrossRefPubMedGoogle Scholar
  11. 11.
    T. H. Kim, H. Lee, and T. G. Park, Biomaterials, 23, No. 11, 2311–2317 (2002).CrossRefPubMedGoogle Scholar
  12. 12.
    E. I. Shishatskaya, O. N. Voinova, A. V. Goreva, et al., J. Siberian Federal University. Biology, 1, 66–77 (2008).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • E. I. Shishatskaya
    • 1
    • 2
  • A. V. Goreva
    • 1
  • O. N. Voinova
    • 1
  • G. S. Kalacheva
    • 1
  • T. G. Volova
    • 1
    • 2
  1. 1.Institute of BiophysicsSiberian Division of Russian Academy of SciencesKrasnoyarskRussia
  2. 2.Institute of Basic Biology and BiotechnologySiberian Federal UniversityKrasnoyarskRussia

Personalised recommendations