Effect of Dehydroepiandrosterone Sulfate on Maturation and Functional Properties of Interferon-α-Induced Dendritic Cells

  • O. Yu. Leplina
  • M. A. Tikhonova
  • L. V. Sakchno
  • T. V. Tyrinova
  • A. A. Ostanin
  • E. R. Chernykh
Article

We studied the effect of adrenal cortex hormone dehydroepiandrosterone sulfate on maturation and functional activity of interferon-α-induced dendritic cells. Dehydroepiandrosterone sulfate stimulated differentiation and maturation of interferon-α-induced dendritic cell, which manifested in a decrease in the number of CD14+ cells and increase in the ratio of mature CD83+ dendritic cells expressing costimulatory molecules (CD80 and CD86). The induction of dendritic cell differentiation after treatment with dehydroepiandrosterone sulfate was accompanied by an increase in the production of interferon-γ. At the stage of dendritic cell maturation, the effect of dehydroepiandrosterone sulfate manifested in a 4-fold increase in tumor necrosis factor-α production. Dehydroepiandrosterone sulfate had little effect on the production of Th2/antiinfl ammatory cytokines at the stages of differentiation and maturation of interferon-α-induced dendritic cells. Dehydroepiandrosterone sulfate increased the ability of dendritic cells to stimulate Th1 cytokine production by T cells (interferon-γ). This hormone had no effect on the ability of interferon-α-induced dendritic cells to activate CD3+IL-4+T cells in mixed lymphocyte culture.

Key Words

dendritic cells phenotype cytokines dehydroepiandrosterone sulfate 

References

  1. 1.
    J. Banchereau and R. M. Steinman, Nature, 392, 245-252 (1998).CrossRefPubMedGoogle Scholar
  2. 2.
    M. O. Canning, K. Grotenhuis, H. J. de Wit, and H. A. Drexhage, Eur. J. Endocrin., 143, No. 5, 687-695 (2000).CrossRefGoogle Scholar
  3. 3.
    S. Della Bella, S. Nicola, A. Riva, et al., J. Leuk. Biol., 75, No. 1, 106-116 (2004).CrossRefGoogle Scholar
  4. 4.
    C. Dosiou and L. C. Giudice, Endocr. Rev., 26, No. 1, 44-62 (2005).CrossRefPubMedGoogle Scholar
  5. 5.
    H. Ida, P. J. Utz, P. Anderson, and K. Eguchi, Mod. Rheumatol., 15, No. 5, 315-322 (2005).CrossRefPubMedGoogle Scholar
  6. 6.
    H. Jonuleit, U. Kuhn, C. Muller, et al., Eur. J. Immunol., 27, No. 12, 3135-3142 (1997).CrossRefPubMedGoogle Scholar
  7. 7.
    T. Okabe, M. Haji, R. Takayanagi, et al., J. Clin. Endocrinol. Metab., 80, No. 10, 2993-2996 (1995).CrossRefPubMedGoogle Scholar
  8. 8.
    S. Parlato, S. M. Santini, C. Lapenta, et al., Blood, 98, No. 10, 3022-3029 (2001).CrossRefPubMedGoogle Scholar
  9. 9.
    W. F. Pickl, O. Majdic, P. Kohl, et al., J. Immunol., 157, No. 9, 3850-3859 (1996).PubMedGoogle Scholar
  10. 10.
    R. Raghupathy, Semin. Immunol., 13, No. 4, 219-227 (2001).CrossRefPubMedGoogle Scholar
  11. 11.
    S. M. Santini, C. Lapenta, M. Logozzi, et al., J. Exp. Med., 191, No. 10, 1777-1788 (2000).CrossRefPubMedGoogle Scholar
  12. 12.
    S. M. Santini, T. Di Pucchio, C. Lapenta, et al., Stem Cells, 21, No. 3, 357-362 (2003).CrossRefPubMedGoogle Scholar
  13. 13.
    B. Solerte, S. Precerutti, C. Gazzaruso, et al., Eur. J. Endocrin., 152, No. 5, 703-712 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • O. Yu. Leplina
    • 1
  • M. A. Tikhonova
    • 1
  • L. V. Sakchno
    • 1
  • T. V. Tyrinova
    • 1
  • A. A. Ostanin
    • 1
  • E. R. Chernykh
    • 1
  1. 1.Institute of Clinical ImmunologySiberian Division of the Russian Academy of Medical SciencesNovosibirskRussia

Personalised recommendations