Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 147, Issue 3, pp 361–365 | Cite as

Short-Term Highly Intense Physiological Stress Causes an Increase in the Expression of Heat Shock Protein in Human Leukocytes

  • D. A. SakharovEmail author
  • A. V. Stepanov
  • M. Yu. Shkurnikov
  • A. G. Tonevitskii
Sports Medicine

Extracellular heat shock protein with molecular weight of 70 kDa is a signal molecule of the immune system. It is secreted by the peripheral blood, liver and muscle cells in response to physiological, thermal, and mental stresses. The main goal of our study was to compare the levels of expression of heat shock protein (70 kDa) matrix ribonucleic acid in leukocytes and serum concentrations of the protein before and after physiological stress. In order to solve this problem, we developed enzyme immunoassay of serum heat shock (70 kDa) protein concentration and a method for evaluating the expression of matrix ribonucleic acid of this protein in leukocytes by the real time PCR. The concentration of 70 kDa heat shock protein in the serum increased 1.7 times as a result of even a short-term highly intense physiological stress, while the expression of its matrix ribonucleic acid in leukocytes increased 1.5 times. The individual features determine the response to physiological stress. Probable sources of 70 kDa heat shock protein are discussed.

Key Words

70 kDa heat shock protein enzyme immunoassay expression of matrix ribonucleic acid in leukocytes physiological stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. A. Sakharov, M. Tevis, and A. G. Tonevitskii, Byull. Eksp. Biol. Med., 145, No. 10, 446–451 (2008).Google Scholar
  2. 2.
    B. Bukau, E. Deuerling, C. Pfund, and E. A. Craig, Cell, 101, No. 2, 119–122 (2000).PubMedCrossRefGoogle Scholar
  3. 3.
    D. R. Ciocca and S. K. Calderwood, Cell Stress Chaperones, 10, No. 2, 86–103 (2005).PubMedCrossRefGoogle Scholar
  4. 4.
    A. Clayton, A. Turkes, H. Havabi, et al., J. Cell. Sci., 118, Pt. 16, 3631–3638 (2005).PubMedCrossRefGoogle Scholar
  5. 5.
    E. Fehrenbach, A. M. Niess, R. Veith, et al., J. Leukoc. Biol., 69, No. 5, 747–754 (2001).PubMedGoogle Scholar
  6. 6.
    E. Fehrenbach, A. M. Niess, K. Voelker, et al., Int. J. Sports Med., 26, No. 7, 552–557 (2005).PubMedCrossRefGoogle Scholar
  7. 7.
    R. Gastpar, M. Gehrmann, M. A. Bausero, et al., Cancer Res., 65, No. 12, 5238–5247 (2005).PubMedCrossRefGoogle Scholar
  8. 8.
    I. Guzhova, K. Kislyakova, O. Moskaliova, et al., Brain Res., 914, Nos. 1–2, 66–73 (2001).PubMedCrossRefGoogle Scholar
  9. 9.
    J. D. Johnson and M. Fleshner, J. Leukoc. Biol., 79, No. 3, 425–434 (2006).PubMedCrossRefGoogle Scholar
  10. 10.
    G. I. Lancaster and M. A. Febbraio, J. Biol. Chem., 280, No. 24, 23,349–23,355 (2005).PubMedCrossRefGoogle Scholar
  11. 11.
    M. P. Mayer and B. Bukau, Cell. Mol. Life Sci., 62, No. 6, 670–684 (2005).PubMedCrossRefGoogle Scholar
  12. 12.
    L. P. Sashchenko, E. A. Dukhanina, D. V. Yashin, et al., J. Biol. Chem., 279, No. 3, 2117–2124 (2004).PubMedCrossRefGoogle Scholar
  13. 13.
    R. C. Walsh, I. Koukoulas, A. Garnham, et al., Cell Stress Chaperones, 6, No. 4, 386–393 (2001).PubMedCrossRefGoogle Scholar
  14. 14.
    B. H. Wright, J. M. Corton, A. M. El-Nahas, et al., Heart Vessels, 15, No. 1, 18–22 (2000).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • D. A. Sakharov
    • 1
    Email author
  • A. V. Stepanov
    • 2
  • M. Yu. Shkurnikov
    • 1
  • A. G. Tonevitskii
    • 1
  1. 1.All-Russian Institute of Physical Culture and SportsMoscowRussia
  2. 2.M. V. Shemyakin and Yu. A. Ovchinnikov Institute of Organic BiochemistryMoscowRussia

Personalised recommendations