Advertisement

Effect of Rhaponticum carthamoides extract on structural and metabolic parameters of erythrocytes in rats with cerebral ischemia

  • M. B. Plotnikov
  • O. I. Aliev
  • A. S. Vasil’ev
  • V. Yu. Andreeva
  • E. A. Krasnov
  • G. I. Kalinkina
Pharmacology and Toxicology

Cerebral ischemia in rats was accompanied by an increase in erythrocyte degradation, which results from changes in lipid composition of their membranes. The content of lipids and phospholipid fraction (phosphatidylcholine, sphingomyelin, and phosphatidylserine) decreased, while the relative content of lysophospholipids increased in erythrocyte membranes. The course of treatment with Rhaponticum carthamoides extract (150 mg/kg perorally, 5 days) contributed to an increase in the contents of total lipids and phospholipids (primarily of sphingomyelin and phosphatidylserine) and decrease in the ratio of lysophospholipids in the erythrocyte membrane of rats with cerebral ischemia. Morphological characteristics of erythrocytes returned to normal, which manifested in an increase in the number of discocytes and decrease in the count of degenerated cells.

Key Words

Rhaponticum carthamoides extract cerebral ischemia erythrocytes erythrocyte membrane phospholipids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. Gribanov, Vopr. Med. Khimii, 37, No. 4, 2–10 (1991).PubMedGoogle Scholar
  2. 2.
    G. I. Kozinets and Yu. A. Simovart, Surface Architectonics of Peripheral Blood Cells under Normal Conditions and during Blood Diseases [in Russian], Tallinn (1984).Google Scholar
  3. 3.
    V. G. Kolb and V. S. Kamyshnikov, Handbook of Clinical Biochemistry [in Russian], Minsk (1982).Google Scholar
  4. 4.
    V. V. Novitskii and N. V. Ryazantseva, Dysregulation Pathology, Ed. G. N. Kryzhanovskii [in Russian], Moscow (2002), pp. 395–405.Google Scholar
  5. 5.
    A. A. Pentyuk, V. I. Gutsol, O. A. Yakovleva, et al., Lab. Delo, No. 6, 457–460 (1987).Google Scholar
  6. 6.
    M. B. Plotnikov, O. I. Aliev, A. S. Vasil'ev, et al., Byull. Eksp. Biol. Med., Suppl. 1, 58–60 (1999).Google Scholar
  7. 7.
    M. B. Plotnikov, O. E. Vaizova, and N. I. Suslov, Ibid., 118, No. 12, 565–567 (1994).Google Scholar
  8. 8.
    M. B. Plotnikov, L. N. Zibareva, A. A. Koltunov, et al., Rastit. Resursy, No. 1, 91–96 (1998).Google Scholar
  9. 9.
    J. Findley and W. Evans, Biological Membranes: Methods [in Russian], Moscow (1990).Google Scholar
  10. 10.
    E. A. Chernitskii and A. V. Vorobei, Structure and Functions of Erythrocyte Membranes [in Russian], Minsk (1986).Google Scholar
  11. 11.
    M. R. Yakubova, G. L. Genkina, T. T. Shakirov, and N. K. Abubakirov, Khim. Prirod. Soed., No. 6, 737–740 (1978).Google Scholar
  12. 12.
    J. T. Dodge, C. Mitchell, and D. J. Hanahan, Arch. Biochem. Biophys., 100, 119–130 (1963).PubMedCrossRefGoogle Scholar
  13. 13.
    J. Folch, M. Lees, and G. Sloane-Stanley, J. Biol. Chem., 226, 497–509 (1957).PubMedGoogle Scholar
  14. 14.
    V. V. Kumar, Ind. J. Biochem. Biophys., 30, 135–138 (1993).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • M. B. Plotnikov
    • 1
  • O. I. Aliev
    • 1
  • A. S. Vasil’ev
    • 1
  • V. Yu. Andreeva
    • 2
  • E. A. Krasnov
    • 2
  • G. I. Kalinkina
    • 2
  1. 1.Institute of Pharmacology, Tomsk Research CenterSiberian Division of the Russian Academy of Medical SciencesTomskRussia
  2. 2.Siberian State Medical UniversityTomskRussia

Personalised recommendations