Bulletin of Experimental Biology and Medicine

, Volume 145, Issue 3, pp 358–361 | Cite as

Evaluation of antitumor activity of rubomycin deposited in absorbable polymeric microparticles

  • E. I. Shishatskaya
  • A. V. Goreva
  • O. N. Voinova
  • E. V. Inzhevatkin
  • R. G. Khlebopros
  • T. G. Volova


An experimental dosage form of rubomycin is developed: the drug is incorporated in absorbable polymeric (polyhydroxybutyrate) matrix in the form of microparticles. Antitumor efficiency of this rubomycin dosage form was studied in laboratory mice with transplanted Ehrlich ascitic carcinoma. Rubomycin deposited in polymeric microparticles exhibited pronounced antitumor activity, inhibited the proliferative activity of Ehrlich ascitic carcinoma, and improved survival of mice with tumors. This dosage form of the drug can be used for local injections.

Key Words

microencapsulation rubomycin absorbable polymers polyhydroxybutyrate Ehrlich’s ascitic carcinoma 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. I. Ataullakhanov, T. V. Batasheva, and V. M. Vitvitskii, Antibiot. Khimioter., 39, No. 9–10, 26–29 (1993).Google Scholar
  2. 2.
    T. G. Volova, V. I. Sevast’yanov, and E. I. Shishatskaya, Polyhydroxylalcanoates: Biodegraded Polymers for Medicine [in Russian], Ed. V. I. Shumakov, Krasnoyarsk (2006).Google Scholar
  3. 3.
    A. M. Genin, A. E. Il’in, A. S. Kaplanskii, et al., Aviakosm. Ekol. Med., 35, No. 4, 14–20 (2001).Google Scholar
  4. 4.
    BIOPLASTOTAN Trademark, Registration Certificate No. 315652, Federal Institute of Patent Expert Evaluations, application No. 2006703271/50, priority of 15.02.06. MKTU Classes: 01, 05, 10.Google Scholar
  5. 5.
    E. I. Shishatskaya, A. V. Zhemchugova, and T. G. Volova, Antibiot. Khimioter., Nos. 2–3, 3–14 (2005).Google Scholar
  6. 6.
    E. I. Shishatskaya and A. Goreva, Perspektivnye Materialy, No. 4, 65–70 (2006).Google Scholar
  7. 7.
    D. Y. Furgeson, M. R. Dreher, and A. Chilkoti, J. Control Release, 110, No. 2, 362–369 (2006).PubMedCrossRefGoogle Scholar
  8. 8.
    D. A. Gewirtz, Biochem. Pharmacol., 57, No. 7, 727–741 (1999).PubMedCrossRefGoogle Scholar
  9. 9.
    G. A. Husseini, N. Y. Rapoport, D. A. Christensen, et al., Colloid Surf. B: Bionterf., 24, No. 3, 253–264 (2002).CrossRefGoogle Scholar
  10. 10.
    J. Kost and R. Langer, Adv. Drug Deliv. Rev., 46, Nos. 1–3, 125–148 (2001).PubMedCrossRefGoogle Scholar
  11. 11.
    E. S. Lee, K. Na, and Y. H. Bae, J. Control Release, 103, No. 2, 405–418 (2005).PubMedCrossRefGoogle Scholar
  12. 12.
    R. Lin, L. Shing, and C. H. Wang, Biomaterials, 26, No. 21, 4476–4485 (2005).PubMedCrossRefGoogle Scholar
  13. 13.
    S. Q. Liu, Y. W. Tong, and Yi. Y. Yang, Ibid., 26, No. 24, 5064–5074 (2005).PubMedCrossRefGoogle Scholar
  14. 14.
    J. L. West, Nat. Mater., 2, No. 11, 709–710 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • E. I. Shishatskaya
    • 1
  • A. V. Goreva
    • 2
  • O. N. Voinova
    • 1
  • E. V. Inzhevatkin
    • 3
  • R. G. Khlebopros
    • 1
  • T. G. Volova
    • 2
  1. 1.Institute of BiophysicsSiberian Division of Russian Academy of SciencesKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia
  3. 3.International Center for Studies of Critical ConditionsPresidium of Krasnoyarsk Research Center of Siberian Division of Russian Academy of SciencesKrasnoyarskRussia

Personalised recommendations