Protective and therapeutic effects of glyprolines in psychoemotional stress induced by cholecystokinin-4 injection

  • S. E. Edeeva
  • G. N. Kopylova
  • Z. V. Bakaeva
  • G. E. Samonina
  • B. A. Umarova
  • A. A. Guseva
General Pathology and Pathophysiology
  • 27 Downloads

Abstract

Experiments on outbred albino male rats showed that psychoemotional stress induced by intraperitoneal injection of cholecystokinin-4 (100 µg/kg) increased anxiety, impaired orientation and exploration activities in the elevated plus-maze and hole-board tests, and increased the level of depression of Porsolt test. Preliminary intranasal administration of glyprolines (15 min before cholecystokinin) in a dose of 3.7 µmol/kg prevented the development of stress-induced behavioral disturbances. Administration of peptides 30 min after cholecystokinin-4, i.e. to rats with developed behavioral disturbances, almost completely abolished these disturbances.

Key Words

stress cholecystokinin-4 behavior glyprolines 

References

  1. 1.
    S. E. Badmaeva, G. N. Kopylova, N. N. Abushinova, et al., Ros. Fiziol. Zh., 91, No. 5, 543–550 (2005).Google Scholar
  2. 2.
    S. E. Badmaeva, G. N. Kopylova, G. E. Samonina, et al., Vestn. Mosk Gos. Univer., Ser. 16. Biology, No. 4, 3–7 (2005).Google Scholar
  3. 3.
    B. V. Vas’kovskii, Yu. A. Zolotareva, S. E. Zhuikova, et al., Vopr. Biol. Med. Farm. Khimii, No. 3, 45–47 (2003).Google Scholar
  4. 4.
    Yu. A. Zolotareva, S. E. Zhuikova, I. P. Ashmarin, et al., Byull. Eksp. Biol. Med., 135, No. 4, 422–423 (2003).Google Scholar
  5. 5.
    M. M. Kozlovskaya, I. I. Kozlovskii, E. A. Val’dman, et al., Zn. Vyssh. Nervn. Deyat., 88, No. 6, 751–761 (2002).Google Scholar
  6. 6.
    G. N. Kopylova, S. E. Badmaeva, N. G. Levitskaya, et al., Byull. Eksp. Biol. Med., 138, No. 7, 9–11 (2004).CrossRefGoogle Scholar
  7. 7.
    N. G. Levitskaya, N. V. Latysheva, L. A. Andreeva, et al., Vestn. Mosk Gos. Univer., Ser. 16. Biology, No. 2, 17–22 (2000).Google Scholar
  8. 8.
    J. Andre, B. Zeau, M. Pohl et al., J. Neurosci., 25, No. 35, 7896–7904 (2005).PubMedCrossRefGoogle Scholar
  9. 9.
    D. Eser, F. Michele, P. Zwanzger, et al., Neuropsychopharmacology, 30, No. 1, 192–195 (2005).PubMedCrossRefGoogle Scholar
  10. 10.
    J. Farook, Y. Zhu, Q. Wang, et al., Neurosci. Lett., 358, No. 3, 215–219 (2004).PubMedCrossRefGoogle Scholar
  11. 11.
    A. Flint, D. Koszycki, F. Vaccarino, et al., Am. J. Psychiatry., 155, No. 2, 283–285 (1998).PubMedGoogle Scholar
  12. 12.
    J. Harro, C. Löfberg, J. F. Rehfel, and L. Oreland, Naunyn. Schmiedebergs. Arch. Pharmacol., 354, No. 1, 59–66 (1996).PubMedCrossRefGoogle Scholar
  13. 13.
    F. Noble, S. A. Wank, J. N. Crawley, et al., Pharmacol. Rev., 51, No. 4, 745–781 (1999).PubMedGoogle Scholar
  14. 14.
    J. Shlik, Y. Zhou, D. Koszycki, et al., J. Psychopharmacol., 13, No. 4, 385–390 (1999).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • S. E. Edeeva
    • 1
  • G. N. Kopylova
    • 1
  • Z. V. Bakaeva
    • 1
  • G. E. Samonina
    • 1
  • B. A. Umarova
    • 1
  • A. A. Guseva
    • 1
  1. 1.Department of Human and Animal PhysiologyBiological Faculty of M. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations