Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 145, Issue 1, pp 33–36 | Cite as

Relationship between parameters of lipid peroxidation during obstructive jaundice and after bile flow restoration

  • L. B. DudnikEmail author
  • A. N. Tsupko
  • M. A. Shupik
  • G. G. Akhaladze
  • E. I. Galperin
  • L. V. Platonova
  • E. A. Pantaz
  • A. V. Alessenko
Article
  • 40 Downloads

Abstract

Restoration of bile flow after 9-day cholestasis in rat liver normalized the content of lipid peroxidation products. The removal of the cholestatic factor after 12-day cholestasis was not followed by recovery of these parameters. We showed that measurement of serum concentration of lipid peroxidation products in patients with cholelithiasis during the preoperative period holds promise for selection of the optimum time for surgical treatment and prediction of the risk of postoperative complications.

Key Words

lipid peroxidation cholelithiasis common bile duct ligation liver blood serum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. F. Blyuger, L. B. Dudnik, A. Ya. Maiore, and I. E. Mieze, Byull. Eksp. Biol. Med., 99, No. 2, 166–169 (1985).CrossRefGoogle Scholar
  2. 2.
    L. B. Dudnik, A. N. Tsyupko, A. V. Khrenov, and A. V. Alesenko, Biokhimiya, 66, No. 9, 1252–1262 (2001).Google Scholar
  3. 3.
    L. B. Dudnik, A. N. Tsyupko, L. N. Shingarova, et al., Izv. Ros. Akad. Nauk. Ser. Biol., No. 6, 650–658 (2005).Google Scholar
  4. 4.
    I. D. Stal’naya and T. G. Garishvili, Modern Biochemical Methods [in Russian], Moscow (1977), pp. 63–64.Google Scholar
  5. 5.
    E. G. Bligh and W. J. Dyer, Can. J. Biochem., 37, No. 8, 911–923 (1959).PubMedCrossRefGoogle Scholar
  6. 6.
    H. Kamata and H. Hirata, Cell. Signal., 11, No. 1, 1–14 (1999).PubMedCrossRefGoogle Scholar
  7. 7.
    G. Leonarduzzi, M. Parola, G. Muzio, et al., Biochem. Biophys. Res. Commun., 214, No. 2, 669–675 (1995).PubMedCrossRefGoogle Scholar
  8. 8.
    P. Ljubuncic, B. Fuhrman, J. Oiknine, et al., Gut, 39, No. 3, 475–478 (1996).PubMedCrossRefGoogle Scholar
  9. 9.
    M. Orellana, R. Rodrigo, L. Thielemann, and V. Guajardo, Comp. Biochem. Physiol. Toxicol. Pharmacol., 126, No. 2, 105–111 (2000).Google Scholar
  10. 10.
    M. Parola, G. Leonarduzzi, G. Robino, et al., Free Radic. Biol. Med., 20, No. 3, 351–359 (1996).PubMedCrossRefGoogle Scholar
  11. 11.
    T. Patel and G. J. Gores, Hepatology, 21, No. 6, 1725–1741 (1995).PubMedGoogle Scholar
  12. 12.
    C. M. Rodrigues and C. M. Steer, J. Hepatol., 32, No. 1, 135–141 (2000).PubMedCrossRefGoogle Scholar
  13. 13.
    R. J. Sokol, M. Devereaux, R. A. Khandwala, and K. O’Brien, Hepatology, 17, No. 5, 869–881 (1993).PubMedCrossRefGoogle Scholar
  14. 14.
    R. Stocker and B. N. Ames, Proc. Natl. Acad. Sci. USA, 84, No. 22, 8130–8134 (1987).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • L. B. Dudnik
    • 1
    Email author
  • A. N. Tsupko
    • 1
  • M. A. Shupik
    • 1
  • G. G. Akhaladze
    • 2
  • E. I. Galperin
    • 2
  • L. V. Platonova
    • 2
  • E. A. Pantaz
    • 1
  • A. V. Alessenko
    • 1
  1. 1.E. M. Emanuel’ Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.I. M. Sechenov Moscow Medical AcademyMoscowRussia

Personalised recommendations