Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 144, Issue 6, pp 791–794 | Cite as

Acceleration of fibril formation and thermal stabilization of collagen fibrils in the presence of taxifolin (dihydroquercetin)

  • Y. S. Tarahovsky
  • I. I. Selezneva
  • N. A. Vasilieva
  • M. A. Egorochkin
  • Yu. A. Kim
Article

Abstract

We studied the effect of flavonoid taxifolin (dihydriquercetin) on the structure and thermal stability of collagen I fibrils. Taxifolin accelerated fibril formation with reconstruction of periodical cross-striation characteristic of these fibrils. Differential scanning calorimetry showed elevation of melting temperature of collagen fibrils formed in neutral or weakly alkaline media, but not of individual tropocollagen molecules in acid medium. Taxifolin capacity to stimulate fibril formation and promote stabilization of fibrillar forms of collagen can be used in medicine.

Key Words

collagen taxifolin dihydroquercetin flavonoids polyphenols 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. K. Kolkhir, N. A. Tyukavkina, V. A. Bykov, et al., Khim. Farm. Zh., No. 9, 61 (1995).Google Scholar
  2. 2.
    N. A. Tyukavkina, I. A. Rulenko, and Yu. S. Kolesnik, Vopr. Pitaniya, No. 2, 33–38 (1996).Google Scholar
  3. 3.
    S. M. Bose, V. H. Rao, L. Verbrugger, and S. Orloff, J. Belge Rhumftol. Med. Phys., 31, No. 3, 153–170 (1976).Google Scholar
  4. 4.
    K. Gomathi, D. Gopinath, A. M. Rafiuddin, et al., Biomaterials, 24, No. 16, 2767–2772 (2003).PubMedCrossRefGoogle Scholar
  5. 5.
    B. Han, J. Jauregui, B. W. Tang, and M. E. Nimni, J. Biomed. Mater. Res. A., 65, No. 1, 118–124 (2003).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Lopez-Lazaro, Curr. Med. Chem. Anticancer Agents, 2, No. 6, 691–714 (2002).PubMedCrossRefGoogle Scholar
  7. 7.
    B. Madhan, V. Subramanian, J. R. Rao, et al., Int. J. Biol. Macromol., 37, Nos. 1–2, 47–53 (2005).PubMedCrossRefGoogle Scholar
  8. 8.
    C. Manach, G. Williamson, C. Morand, et al., Am. J. Clin. Nutr., 81, Suppl. 1, 230S–242S (2005).PubMedGoogle Scholar
  9. 9.
    C. A. Miles and A. J. Bailey, Micron, 32, No. 3, 325–332 (2001).PubMedCrossRefGoogle Scholar
  10. 10.
    I. M. Rietjens, M. G. Boersma, H. Van der Woude, et al., Mutat. Res., 574, Nos. 1–2, 124–138 (2005).PubMedGoogle Scholar
  11. 11.
    J. A. Ross and C. M. Kasum, Annu. Rev. Nutr., 22, 19–34 (2002).PubMedCrossRefGoogle Scholar
  12. 12.
    E. I. Tiktouplo and A. V. Kajava, Biochemistry, 37, No. 22, 8147–8152 (1998).CrossRefGoogle Scholar
  13. 13.
    D. Voet and J. G. Voet, Biochemistry, New York (1995).Google Scholar
  14. 14.
    R. J. Williams, J. P. Spencer, and C. Rice-Evans, Free Radic. Biol. Med., 36, No. 7, 838–849 (2004).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Y. S. Tarahovsky
    • 1
  • I. I. Selezneva
    • 1
  • N. A. Vasilieva
    • 2
  • M. A. Egorochkin
    • 2
  • Yu. A. Kim
    • 3
  1. 1.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchino
  2. 2.Bioflavon FirmObninsk
  3. 3.Institute of Cell BiophysicsRussian Academy of SciencesPushchino

Personalised recommendations