Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 144, Issue 6, pp 760–763 | Cite as

Proteinase-activated receptor agonists stimulate the increase in intracellular Ca2+ in cardiomyocytes and proliferation of cardiac fibroblasts from chick embryos

  • J. Ide
  • T. Aoki
  • S. Ishivata
  • E. Glusa
  • S. M. StrukovaEmail author
Article

Abstract

We studied activation of cultured cardiomyocytes and cardiac fibroblasts from chick embryos induced by agonists of PAR1 (thrombin and PAR1 peptide agonist) and PAR2 (trypsin, factor Xa, and peptide SLIGRL) by analyzing changes in intracellular Ca2+ concentration ([Ca2+]i) and cardiac fibroblast proliferation. Exposure of cardiomyocytes with thrombin induced immediate permanent dose-dependent increase in [Ca2+]i. Ca2+ response decreased in a calcium-free medium. Peptide agonists of PAR1 and PAR2 also stimulated the increase in [Ca2+]i in cardiomyocytes. Thrombin induced a short-term increase in [Ca2+]i in cardiac fibroblasts and potentiated cell proliferation. PAR2 agonists trypsin and peptide SLIGRL stimulated proliferation of cardiac fibroblasts. Our results indicate that cardiomyocytes and cardiac fibroblasts from chick embryos have at least two types of PAR (types 1 and 2).

Key Words

cardiomyocytes cardiac fibroblasts PAR agonists 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Strukova, Biokhimiya (Moskva), 66, 8–18 (2001).Google Scholar
  2. 2.
    F. Chevessier, D. Hantai, and M. Verdiere-Sahuque, J. Cell. Physiol., 189, No. 2, 152–161 (2001).PubMedCrossRefGoogle Scholar
  3. 3.
    C. Chinni, M. R. de Niese, A. L. Jenkins, et al., J. Cell. Sci., 113, Pt. 24, 4427–4433 (2000).PubMedGoogle Scholar
  4. 4.
    S. R. Coughlin, Nature, 407, No. 6801, 258–264 (2000).PubMedCrossRefGoogle Scholar
  5. 5.
    M. R. De Niese, C. Chinni, R. N. Pike, et al., Exp. Cell. Res., 274, No. 1, 149–156 (2002).PubMedCrossRefGoogle Scholar
  6. 6.
    M. D. Hollenberg and S. J. Compton, Pharmacol. Rev., 54, No. 2, 203–217 (2002).PubMedCrossRefGoogle Scholar
  7. 7.
    T. Jiang, P. Jr. Danilo, and S. F. Steinberg, J. Mol. Cell. Cardiol., 30, No. 11, 2193–2199 (1998).PubMedCrossRefGoogle Scholar
  8. 8.
    M. H. Lu, C. DiLullo, T. Schultheiss, et al., J. Cell. Biol., 117, No. 5, 1007–1022 (1992).PubMedCrossRefGoogle Scholar
  9. 9.
    V. S. Ossovskaya and N. W. Bunnet, Physiol. Rev., 84, No. 2, 579–621 (2004).PubMedCrossRefGoogle Scholar
  10. 10.
    A. Sabri, G. Muske, H. Zhang, et al., Circ. Res., 86, No. 10, 1054–1061 (2000).PubMedGoogle Scholar
  11. 11.
    A. Sabri, J. Short, J. Guo, and S. F. Steinberg, Ibid., 91, 532–539 (2002).PubMedCrossRefGoogle Scholar
  12. 12.
    S. Strukova, Front. Biosci., 11, 59–80 (2006).PubMedCrossRefGoogle Scholar
  13. 13.
    W. Y. Sun, D. P. Witte, J. L. Degen, et al., Ibid., 11, 6597–6602 (2006).Google Scholar
  14. 14.
    J. Xue, Q. Wu, L. A. Westfield, et al., Proc. Natl. Acad. Sci. USA, 95, No. 13, 7603–7607 (1998).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • J. Ide
    • 2
  • T. Aoki
    • 2
  • S. Ishivata
    • 2
  • E. Glusa
    • 1
  • S. M. Strukova
    • 1
    Email author
  1. 1.Department of Human and Animal Physiology, Biological FacultyM. V. Lomonosov Moscow State UniversityMoscow
  2. 2.Department of Physics, School of Science and EngineeringWaseda UniversityTokyoJapan

Personalised recommendations