Effect of homocysteine and homocysteic acid on glutamate receptors on rat lymphocytes

  • E. A. Vladychenskaya
  • O. V. Tyulina
  • A. A. Boldyrev
Article

Abstract

Homocysteine and homocysteic acid increased the stationary level of reactive oxygen species in rat lymphocytes, homocysteic acid being more potent in this respect. The effect of this compound was realized via ionotropic NMDA receptors and group III metabotropic glutamate receptors. Incubation of lymphocytes with homocysteic acid increased intracellular Ca2+ concentration, activated of protein kinase C, and induced accumulation of reactive oxygen species, which reflected the involvement of homocysteic acid into cell signaling mechanisms.

Key Words

glutamate receptors reactive oxygen species lymphocytes homocysteic acid homocysteine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Boldyrev, Byull. Eksp. Biol. Med., 140, No. 7, 39–44 (2005).Google Scholar
  2. 2.
    A. A. Boldyrev, V. I. Kazey, T. A. Leinsoo, et al., Biochem. Biophys. Res. Commun., 324, 133–139 (2004).PubMedCrossRefGoogle Scholar
  3. 3.
    S. Devadas, L. Zaritskaya, S. G. Rhee, et al., J. Exp. Med., 195, No. 1, 59–70 (2002).PubMedCrossRefGoogle Scholar
  4. 4.
    Y. Ganor, M. Besser, N. Ben-Zakay, and M. Levite, J. Immunol., 170, 4362–4372 (2003).PubMedGoogle Scholar
  5. 5.
    Ph. Gortz, A. Hoinke, W. Fleischer, et al., Neurol. Sci., 218, 109–114 (2004).CrossRefGoogle Scholar
  6. 6.
    R. P. Haugland, Handbook of Fluorescent Probes and Research Chemicals. Molecular Probe, 6th Ed., 1996, Vol. 155, p. 496.Google Scholar
  7. 7.
    O. T. G. Jones and J. T. Hancock, Free Radicals and Inflammation, Eds. P. R. Blake and C. H. Evans, Switzerland (2000), pp. 21–46.Google Scholar
  8. 8.
    W. K. Kim and Y. S. Pae, Neurosci. Lett., 216, 117–120 (1996).PubMedGoogle Scholar
  9. 9.
    S. A. Lipton, W. K. Kim, Y. B. Choi, et al., Proc. Natl. Acad. Sci. USA, 94, 5923–5928 (1997).PubMedCrossRefGoogle Scholar
  10. 10.
    R. Pacheco, F. Ciruela, V. Casado, et al., J. Biol. Chem., 279, 33,352–33,358 (2004).Google Scholar
  11. 11.
    I. Qureshi, H. Chen, A. T. Brown, et al., J. Vasc. Med., 10, No. 3, 15–23 (2005).Google Scholar
  12. 12.
    H. Refsum, P. M. Ueland, O. Nygard, and S. E. Vollset, Annu. Rev. Med., 49, 31–62 (1998).PubMedCrossRefGoogle Scholar
  13. 13.
    S. Seshadri, A. Beiser, J. Selhub, et al., N. Engl. J. Med., 346, 476–483 (2002).PubMedCrossRefGoogle Scholar
  14. 14.
    M. Tymianski and Ch. Tator, Neurosurgery, 38, No. 6, 1176–1195 (1996).PubMedCrossRefGoogle Scholar
  15. 15.
    E. Zieminska, A. Stafiej, and J. W. Lazarewicz, J. Neurochem. Int., 43, 481–492 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • E. A. Vladychenskaya
    • 1
    • 2
  • O. V. Tyulina
    • 2
  • A. A. Boldyrev
    • 1
    • 2
  1. 1.Institute of NeurologyRussian Academy of Medical SciencesRussia
  2. 2.M. V. Lomonosov Moscow State UniversityMoscow

Personalised recommendations